Home
Class 12
MATHS
Prove by mathematical induction that sum...

Prove by mathematical induction that `sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N`.

Text Solution

Verified by Experts

Let `P(n):sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1)`
Step I For n=1,
LHS of Eq. (i) `=sum_(r=0)^(1)r.^(1)C_(r)=0+1.^(1)C_(1)=1` and RHS of Eq. (i) `=1.2^(1-1)=2^(0)=1`
Therefore , P(1) is true .
Step II Assume that P(k) is true , then P(k) : `sum_(r=0)^(k)r.^(k)C_(r)=k.2^(k-1)`
Step III For `n=k+1`
`P(k+1):sum_(r=0)^(k+1)r.^(k+1)C_(r)=(k+1).2^(k)`
`therefore LHS =sum_(r=0)^(k+1)r.^(k+1)C_(r)=0+sum_(r=1)^(k+1)r.^(k+1)C_(r)`
`=sum_(r=1)^(k+1)r.^(k+1)C_(r)=sum_9r=1)^(k)r.^(k+1)C_(r)+(k+1).^(k+1)C_(k+1)`
`=sum_(r=1)^(k)r(.^(k)C_(r)+.^(k)C_(r-1))+(k+1)`
`=sum_(r=1)^(k)r.^(k)C_(r)+sum_(r=0)^(k)r.^(k)C_(r-1)+(k+1)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k+1)r.^(k)C_(r-1)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum _(r=0)^(k)(r+1).^(k)C_r)`
`=sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k)r.^(k)C_(r)+sum_(r=0)^(k).^(k)C_(r)`
`=P(k)+P(k)+2^k` [by assumption step]
`=k.2^(k-1)+k.26(k-1)+2^(k)=2.k.2^k-1+2^k`
`=k.2^k+2^k=(k+1).2^k=RHS`
Therefore , `P(k+1)` is true. Hence , by the principle of mathematical induction `P(n)` is true for all `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=0)^(m)( n+r )C_(n)=

Prove by mathematical induction that 1^3+2^3+……+n^3=[(n(n+1))/2]^2

Prove by mathematical induction 1+2+3+……+n(n(n+1))/(2) .

Evaluate sum_(r=1)^(n)rxxr!

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

Prove by mathematical induction that 1.4+4.7+7.10+…. up to n terms =n(3n^(2)+3n-2)

Prove the following by the principle of mathematical induction: \ x^(2n-1)+y^(2n-1) is divisible by x+y for all n in Ndot

Prove that sum_(r=0)^n 3^r nCundersetr = 4^n .

Prove that ""^(n)C_(r)+""^(n)C_(r-1)=""^(n+1)C_(r) .

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =