Home
Class 12
MATHS
Using the principle of mathematical indu...

Using the principle of mathematical induction to prove that `int_(0)^(pi//2)(sin^2nx)/(sinx)dx=1+(1)/(3)+(1)/(5)+.....+(1)/(2n-1)`

Text Solution

Verified by Experts

Let `P(n): int _(0)^(pi//2)(sin^2nx)/(sinx)dx=1+(1)/(3)+(1)/(5)+......+(1)/(2n-1)` ..........(i)
Step I For n =1
LHS of Eq. 9i) `= int_(0)^(pi//2)(sin^2x)/(sinx)dx=int_(0)^(pi//2)sin xdx=-[cosx]_(0)^(pi//2)=-(0-1)=1` and RHS of Eq. (i) =1
Therefore , P(1) is true .
Step II Assume it is true for n=k, then
`P(k):int_(0)^(pi//2)(sin^2kx)/(sinx)dx=1+(1)/(3)+(1)/(5)+.......+(1)/(2k-1)`
Step III For `n=k+1`,
`P(k+1):int_(0)^(pi//2)(sin^2(k+1)x)/(sinx)dx=1+(1)/(3)+(1)/(5)+.....+(1)/(2k-1)+(1)/(2k+1)`
LHS `=int_(0)^(pi//2)(sin(k+1)x)/(sinx)kdx`
`=int_(0)^(pi//2)(sin^2(k+1)x-sin^2kx+sin^2kx)/(sinx)dx`
`=int_(0)^(pi//2)(sin^2(k+1)x-sin^2kx)/(sinx)dx+int_(0)^(pi//2)(sin^2kx)/(sinx)dx`
`=int_(0)^(pi//2)(sin(2k+1)xsinx)/(sinx)dx+P(k)` [by assumption step]
`=int_(0)^(pi//2)sin(2k+1)xdx+P(k)`
`=-[(cos (2k+1)x)/(2k+1)]_(0)^(pi//2)+P(k)`
`=-(1)/((2k+1))[cos(pik+(pi)/(2))-1]+P(k)`
`=-(1)/((2k+1))[-sinpik-1]+P(k)`
`=-(1)/(2k+1)[-0-1]+P(k)`
`=(1)/((2k+1))+1+(1)/(3)+(1)/(5)+......+(1)/((2k-1))` [by assumption step]
`=1+(1)/(3)+(1)/(5)+.....+(1)/((2k-1))+(1)/((2k+1))=RHS`
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction , the result is true for all `n in N`,
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) e^(sinx).sin 2x dx =

int_(0)^(pi//2) (sin x)/(1 +cos^2) dx .

Prove that by using the principle of mathematical induction for all n in N : (1)/(2)+ (1)/(4)+ (1)/(8)+ ......+ (1)/(2^(n))= 1-(1)/(2^(n))

Prove that by using the principle of mathematical induction for all n in N : (1+(1)/(1))(1+(1)/(2))(1+(1)/(3))....(1+(1)/(n))= (n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))

int_0^(pi//2)(dx)/(1 + tanx) =

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))