Home
Class 12
MATHS
Prove that sum(r=0)^n^n Crsinr xcos(n-r)...

Prove that `sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot`

Text Solution

Verified by Experts

Let `P(n):{prod_(r=0)^(n)f_(r)(x)}^(')=sum_(i=1)^(n){f_(1)(x)f_(2)(x).....f_(1)(x)....f_(n)(x)}`
Step I For ` n =1` ,
LHS of Eq. (i) `={prod_(r=1)^(1)f_(r)f(x)}^(')={f_(1)(x)}^(')=f_(1)^(')(x)`
RHS of Eq. (i) `=sum_(i=1)^(1){f_1(x)f_(2)(x)...f_(1)^(')(x)... f_(1)(x)}`
which is true for `n=1`.
Step II Assume it is true for `n=k` , then
`P(k):{prod_(r=1)^(k)f_(r)(x)}^(')=sum_(i=1)^(k){f_1(x)f_2(x).....f_1(x)....f_k(x)}`
Step III For `n=k+1`,
LHS`={prod_(r=1)^((k+1))f_r(x)}={prod_(r=1)^(k)f_r(x).f_(k+1)(x)}^(')`
`=prod_(r=1)^(k)f_r(x).f_(k+1)^(')(x)+f_(k+1)(x){prod_(r=1)^(k)f_r(x)}^'`
`= prod_(r=1)^(k)f_r(x).f_(k+1)^(')(x)+f_(k+1)(x).sum_(i=1)^(k){f_1(x).f_2(x).....f_(k+1)^(')....f_(k)(x)}`
`={f_1(x)f_2(x)....f_k(x)}f_(k+1)^(')(x)+f_(k+1)(x) sum_(i=1)^(k){f_1(x)f_2(x)....f_(i) '(x).....f_(k)(x)}`
`= sum_(i=1)^(k+1){f_19x)f_2(x).....f_(i)'(x)....f_(k+1)(x)}=RHS`
This shows that the result is true for `n=k+1`. Hence , by the principle of mathematical induction , the result is true for all `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^n 3^r nCundersetr = 4^n .

sum_(r=0)^(m)( n+r )C_(n)=

Prove by mathematical induction that sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N .

Evaluate sum_(r=1)^(n)rxxr!

Prove that ""^(n)C_(r)+""^(n)C_(r-1)=""^(n+1)C_(r) .

Prove that (x+b)^(n)=""^(n)C_(0) x^(n)+""^(n)C_(1) x^(n-1)b+ ""^(n)C_(2) x^(n-2) b^(2)+...+ ....+..... ""^(n)C_(n) b^(n), and n in N and hence find (101)^(4) .

The value of sum_(r=1)^(n)(nP_(r))/(r!)=

If x+y=1 , then sum_(r=0)^(n)r^(2)""^(n)C_(r)x^(r)y^(n-r) equals:

The value of sum_(r=1)^(10)r(n C_(r))/(n C_(r-1)) =

lim_(n to oo) sum_(r = 1)^(n) 1/n sin(r pi)/(2pi) is :