Home
Class 12
MATHS
Prove 1.4.7+2.5.8+3.6.9+....... upto n t...

Prove `1.4.7+2.5.8+3.6.9+.......` upto n terms `=(n)/(4)(n+1)(n+6)(n+7)`

Text Solution

Verified by Experts

Let `P(n):1.4.7+2.5.8+3.6.9+......+` upto n terms
`(n)/(4)(n+1)(n+6)(n+7)`
i.e., `P(n):1.4.7+2.5.8+3.6.9+......+n(n+3)(n+6)=(n)/(4)(n+1)(n+6)(n+7)`
Step I For `n=1`,
LHS of Eq. (i) `=1.4.7=28`
RHS of Eq. (i) `=(1)/(4)(1+1)(1+6)(1+7)=(2.7.8)/(4)=28`
LHS = RHS
Therefore, P(1) is true .
Step II Let us assume that the result is true for `n=k`. Then , `P(k):1.4.7+2.5.8+3.6.9+......+k(k+3)(k+6)=(k)/(4)(k+1)(k+6)(k+7)`
Step III For `n=k+1`, we have to prove that
`P(k+1):1.4.7+2.5.8+3.6.9+.....+k(k+3)(K+6)+(k+1)(k+4)(k+7)`
`=((k+1))/(4)(k+2)(k+7)(k+8)`
LHS =1.4gt7+2.5.8+3.6.9+......+k(k+3)(k+6)+(k+1)(k+4)(k+7)`
=(k)/(4)(k+1)(k+6)(k+7)+(k+1)(k+4)(k+7)`[by assumption step ]
`=(k+1)(k+7){(k)/(4)(k+6)+(k+4)}`
`=(k+1)(k+7){(k^2+6k+4k+16)/(4)}`
`=(k+1)(k+7){(k^2+10k+16)/(4)}`
`=(k+1)(k+7){((k+2)(k+8))/(4)}`
`=((k+1))/(4)(k+2)(k+7)(k+8)=RHS`
This shows that the result is true for `n=k+1`. Hence, by the principle of mathematical induction , the result is true for all `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

2 . 4+4 . 6+6 . 8+... to n terms =

1 . 3+3 . 5+5 . 7+.. . . to n terms =

3 + 5 + 7 + .... to n terms is

Sum to n terms of 2+4+6+8 ..=

Prove by mathematical induction that 1.4+4.7+7.10+…. up to n terms =n(3n^(2)+3n-2)

If a=1+2+4+ . . . . upto n terms b=1+3+9+. . . . upto n terms c=1+5+25+. . . . upto n terms then Delta= |[a,2b,4 c],[2,2,2],[2^n,3^n,5^n]|=

If S_(n) = (1)/(1.4)+(1)/(4.7) + (1)/(7.10) +……. to n terms, then lim_(n rarr oo) S_(n) equals :

Prove that by using the principle of mathematical induction for all n in N : 1.2.3+ 2.3.4+ ....+ n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)

The sum of first n terms of the series 1^(2) + 2.2^(2) +3^(2) + 2. 4^(2) + 5^(2) + 2. 6^(2) + "........." is ( n ( n + 1)^(2))/( 2) when n is even. When, n is odd, the sum is :

1^(2)+2^(2)+3^(2)+..........+n^(2)=(n(n+1)(2n+1))/(6)