Home
Class 12
MATHS
Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)...

Prove that `tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo `=`pi/4`

Text Solution

Verified by Experts

Let `P(n):tan^(-1)((1)/(3))+tan^(-1)((1)/(7))+…..+tan^(-1)((1)/(n^+n+1))=tan^(-1)((n)/(n+2))` ……..(i)
Step I For `n=1`
LHS of Eq. (i) `=tan^(-1)((1)/(3)) =tan^(-1)((1)/(1+2))=RHS of Eq. (i)
Therefore , P(1) is true .
Step II Assume that P(k) is true. Then ,
`P(k):tan^(-1)((1)/(3))+tan^(-1)((1)/(3))+tan^(-1)((1)/(7))+........+tan^(-1)((1)/(k^2+k+1))=tan^(-1)((k)/(k+2))`
Step III For `n=k+1`
`P(k+1):tan^(-1)((1)/(3))+tan^(-1)((1)/(7))+....+tan^(-1)((1)/(k^2+k+1))+tan^(-1)((1)/((k+1)^2+(k+1)+1))=tan^(-1)((k+1)/(k+3))`......(ii)
LHS of Eq. (ii)
`=tan^(-1)((1)/(3))+tan^(-1)((1)/(7))+.....+tan^(-1)((1)/(k^2+k+1))+tan^(-1)((1)/((k+1)^2+(k+1)+1))`
`=tan^(-1)((k+1)/(k+2))+tan^(-1)((1)/((k+1)^2+(k+1)+1))` [by aaumption atep]
`=tan^(-1)((k)/(1+(k+1)))+tan^(-1)((1)/(k^2+3k+3))`
`=tan^(-1)((k)/(1+(k+1)))+tan^(-1)((1)/(1+(k+1)(k+2)))`
`=tan^(-1)(((k+1)-1)/(1+(k+1).1))+tan^(-1)(((k+2)-(k+1))/(1+(k+2)(k+1)))`
`=tan^(-1)(k+1)-tan^(-1)1+tan^(-1)(k+2)-tan^(-1)(k+1)=tan^(-1)(k+2)-tan^(-1)1`
`=tan^(-1)((k+2-1)/(1+(k+2).1))=tan^(-1)((k+1)/(k+3))=` RHS of Eq. (ii)
This shows that the result is true for `n=k+1`. Hence. by the principle of mathematical induction . the result is true for all `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Show that 2tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9)

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4

Prove that 2"tan"^(-1)1/2+"tan"^(-1)1/7="tan"^(-1)31/17

Prove that 2tan^(-1)((1)/(2))+ tan^(-1)((1)/(7))= tan^(-1)((31)/(17))

Prove that 2sin^(-1)(3/5)=tan^(-1)((24)/1)

Prove that tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=(pi)/4

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi

tan ^(-1) (1/11)+tan ^(-1)(2/12)=