Home
Class 12
MATHS
Statement-1: For every natural number ng...

Statement-1: For every natural number `nge2`,
`(1)/(sqrt(1))+(1)/(sqrt(2))+(1)/(sqrt(3))+...+(1)/(sqrt(n))gtsqrt(n)`
Statement-2: For every natural number `nge2,`
`sqrt(n(n+1))ltn+1`

A

Statement-1 is true , Statement-2 is true, Statement-2 is correct explanation for Statement-1

B

Statement-1 is true , Statement-2 is true , Statement-2 is not a correct explanation for Statement-1

C

Statement-1 is true , Statement-2 is false

D

Statement-1 is false , Statement -2 is true .

Text Solution

Verified by Experts

Let `P(n)=(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(sqrt(n))`
`therefore P(2)=(1)/(sqrt(2))+(1)w/(sqrt(2))=1.707gt sqrt(2)`
Let us assume that
`P(k)=(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(sqrt(k))gt sqrt(k)` is true for `n=k+1`.
`=(1)/(sqrt(1))+(1)/(sqrt(2))+.....+(1)/(sqrt(k))+(1)/(sqrt(k+1))gt sqrt(k)+(1)/(sqrt(k+1))=sqrt(k(k+1)+1)/(sqrt((k+1)))gt(k+1)/(sqrt((k+1)))" "[therefore sqrt(k(k+1)+1)gtk,forallkge0]`
`therefore P(k+1)gt sqrt((k+1))`
By mathematical induction statement -1 is true , `forall n ge 2` .
Now , let `alpha(n)=sqrt(2(2+1))=sqrt(6)lt 3`
Let us assume that `alpha(k)=sqrt(k(k+1))lt(k+1)` is true
for `n=k+1`
LHS `=sqrt((k+1)(k+2))lt (k+2)" "[therefore (k+1)lt(k+2)]`
By mathematical induction Statement - 2 is true but Statement -2 is not a correct explanation for Statement -1.
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum to n terms of the series (1)/(sqrt(1)+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+(1)/(sqrt(5)+sqrt(7))+.. .

Simiplify (1)/(7+4sqrt3)+(1)/(2+sqrt5)

lim_(n to oo) (sqrt(1) + 2sqrt(2) + 3sqrt(3) + …… + nsqrt(n))/(n^(5//2)) is :

Lt_(n to 0)x/(sqrt(1 + x)-sqrt(1-x)) =

int_(1/2)^(1/sqrt2) (dx)/(x^(2)sqrt(1-x^(2))) =

lim_(x rarr 1) (sqrt(x-1) + sqrt(x-1))/(sqrt(x^(2)-1)) =

The value of ((1+i sqrt(3))/(1-i sqrt(3)))^(6)+((1-i sqrt(3))/(1+i sqrt(3)))^(6)=

For any integer n, the argument of ((sqrt(3)+i)^(4 n+1))/((1-i sqrt(3))^(4 n)) is