Home
Class 12
MATHS
If f(x)=(1)/(1-x) then f[f{f(x)}]=...

If `f(x)=(1)/(1-x)` then f[f{f(x)}]=

A

6

B

-1

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

`becauseg(x)=f{f(x)}=f((1)/(1-x))=(1)/(1-(1)/(1-x))=(x-1)/(x)`
and `h(x)=f[f{f(x)}]=f(g(x))`
`=(1)/(1-g(x))=(1)/(1-(x-1)/(x))=x`
`therefore f(x).g(x).h(x)=(1)/((1-x)).((x-1))/(x).x=-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= (1)/(1-x) , then f[f{x}]=

If f(x) = (x-3)/(x+1) , then f[f{f(x)}] =

If f(x) = (x-1)/(x+1) , then f[1/f(x)] =

If f(x) = (1-x)/(1+x) , then f[f(cos x)] =

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to

If f(x)=1-(1)/(x),"then"f[f((1)/(x))] is :

If f(x) = xe^(x(1-x) , then f(x) is

If f(x) = (1+tanx)/(1-tanx), then f^(')(x) =

If f:[1,oo)to[1,oo) is given by f(x)=x+(1)/(x) , then f^(-1)(x) equals :