Home
Class 12
MATHS
If f(x)=(a-x)/(a+x), the domain of f^(-1...

If `f(x)=(a-x)/(a+x)`, the domain of `f^(-1)(x)` contains

A

`(-oo,oo)`

B

`(-oo,-1)`

C

`(-1,oo)`

D

`(0,oo)`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

Let `y=f(x)=(a-x)/(a+x)impliesay+xy=a-x`
`therefore x=(a(1-y))/((1+y))=f^(-1)(y)impliesf^(-1)(x)=(a(1-x))/((1+x))`
`therefore f^(-1)(x)` is not defined for x = - 1.
Domain of `f^(-1)(x)` belongs to `(-oo,-1)uu(-1,oo)`.
Now, for a = - 1, given function f(x) = - 1, which is constant.
Then, `f^(-1)(x)` is not defined.
`therefore ane-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the domain of f(x) =tan^(-1) x

Write the domain of f(x)=sec^(-1)x

Write the domain of f(x)=cos^(-1)x.

If f(x) = (1-x)/(1+x) , then f[f(cos x)] =

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to

If f(x)= (1)/(1-x) , then f[f{x}]=

If f(x)=(a-x^(n))^(1 / n) , then f(f(x)) =

Write the domain of f(x) = sin^(-1)x

The domain of f(x) = sqrt[(x-7)(9-x)] is

If f(x) = (x-3)/(x+1) , then f[f{f(x)}] =