Home
Class 12
MATHS
If A={x:x^(2)-2x+2gt0}andB={x:x^(2)-4x+3...

If `A={x:x^(2)-2x+2gt0}andB={x:x^(2)-4x+3le0}`
`AnnB` equals

A

`[1,oo]`

B

[1,3]

C

`(-oo,3]`

D

`(-oo,1)uu(3,oo)`

Text Solution

Verified by Experts

The correct Answer is:
B

`A={x:x^(2)-2x+2gt0}={x:(x-1)^(2)+1gt0}=(-oo,oo)`
`B={x:x^(2)-4x+3le0}={x:(x-1)(x-3)le0}`
`={x:1lexle3}=[1,3]`
`AnnB=(-oo,oo)nn[1,3]=[1,3]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A={x:x^(2)-2x+2gt0}andB={x:x^(2)-4x+3le0} A - B equals

If A={x:x^(2)-2x+2gt0}andB={x:x^(2)-4x+3le0} AuuB equals

If x^(2)-3 x+2 ge 0 and x^(2)-3 x-4 le 0 then

If x^(2) + 2x - 3 ge 0 and x^(2) - 2x - 3 ge 0 , then :

Let 2 sin^(2)x + 3 sin x -2 gt 0 and x^(2)-x -2 lt 0 ( x is measured in radian ) . Then 'x' lies in the internal .

If (a, a^(2)) falls inside the angle made by the lines y=(x)/(2), x gt 0 and y=3x, x gt 0 , then a belongs to :

If x^(2)+2 a x+(10-3 a) gt 0 for all x, then

Locus of a moving point such that tangents from it to the two circles : x^2+y^2-5x-3=0 and 3x^2 + 3y^2 +2x+4y-6=0 are equal, is :

The equation 2 "cos"^(2)((x)/(2))"sin"^(2) x = x^(2) + (1)/(x^(2)), 0 le x le (pi)/(2) has no real solution more than one solution none of these