Home
Class 12
MATHS
If A ={ theta : 2cos^2 theta + sintheta ...

If `A ={ theta : 2cos^2 theta + sintheta <=2}` , and `B = {theta: pi/2<=theta<= (3pi)/2}` then the region for `(AnnB)` is _____

Text Solution

Verified by Experts

`because 2cos^(2)theta+sinthetale2`
`therefore 2(1-sin^(2)theta)+sinthetale2`
`implies 2sin^(2)theta-sinthetage0`
`implies sintheta(2sintheta-1)ge0`
`implies sintheta(sintheta-(1)/(2))ge0`
`therefore sinthetale0andsinthetage(1)/(2)`
Now, the values of `theta` which lie in teh interval `(pi)/(2)lethetale(3pi)/(2)[because B={theta:(pi)/(2)lethetale(3pi)/(2)}]`
So, `theta` satisfy `sin theta le 0` in the interval `(pi)/(2)lethetale(5pi)/(6)`.
`therefore AnnB={theta:pilethetale(3pi)/(2)}`
and `AnnB={theta:(pi)/(2)lethetale(5pi)/(6)}`
Hence, `AnnB={theta:(pi)/(2)lethetale(5pi)/(6)orpilethetale(3pi)/(2)}`
`={theta:thetain[(pi)/(2)(5pi)/(6)]uu[pi,(3pi)/(2)]}`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = theta cos theta + sin theta, y = cos theta- theta sin theta , then dy/dx at theta = pi/2

x = cos theta - cos 2 theta, y = sin theta - sin 2 theta . then find dy/dx

Evaluate the following determinants: (b) |(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1

For the curve x =2 cos theta - cos 2 theta and y = 2 sin theta - sin 2 theta , find the equation of tangent at theta = (pi)/(4) .

The number of solutions of the paires of equations : 2sin^(2)theta - cos2theta = 0 , 2cos^(2)theta - 3sintheta = 0 in the interval [0,2pi] is :

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

Prove that (cos^(2) theta)/(1-tan theta)+(sin^(3) theta)/(sin theta - cos theta) =1 + sin theta cos theta .

If x = a (cos theta + theta sin theta), y = a(sin theta - theta cos theta) then (d^(2)y)/(dx^(2)) =

If a sin^(3) theta + b cos^(3) theta = sin^(3) theta * cos theta and a sin theta - b cos theta=0 , then prove that a^(2)+b^(2)=1 .