Home
Class 12
MATHS
If f(y) = (y)/(sqrt(1-y^(2))), g(y) = (y...

If `f(y) = (y)/(sqrt(1-y^(2))), g(y) = (y)/(sqrt(1+y^(2)))`, then (fog) y is equal to

A

`(y)/(sqrt(1-y^(2)))`

B

`(y)/(sqrt(1+y^(2)))`

C

y

D

`((1-y^(2)))/(sqrt(1-y^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
C

`f(y)=(y)/(sqrt((1-y^(2)))),g(y)=(y)/(sqrt((1+y^(2))))`
and `(fog)y=f(g(y))=f((y)/(sqrt((1+y^(2)))))=((y)/(sqrt((1+y^(2)))))/(sqrt(1-(y^(2))/((1+y^(2)))))=((y)/(sqrt((1+y^(2)))))/((1)/(sqrt((1+y^(2)))))=y`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = y sqrt(1-y^(2)) , then dy/dx =

If sqrt(1-x^(2) ) + sqrt(1-y^(2)) = x-y , then dy/dx =

If y = sqrt(sinx + y) then dy/dx is equal to

If x=int_0^(y) (dt)/(sqrt(1+9t^(2))) and (d^(2)y)/(dx^(2)) = ay , then a =

y=sqrt(1+x^(2)) and y'=(xy)/(1+x^(2))

x" "dy=y" "dx +y^2and y(1) =1 , then y (-3) is equal to :

If x+ y = tan^(-1) y and (d^(2)y)/(dx^(2)) =f (y) (dy)/(dx) , then f(y) =

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x