Home
Class 12
MATHS
If f: RvecRvecR are two given functions,...

If `f: RvecRvecR` are two given functions, then prove that `2m indot{if(x)-g(x),0}=f(x)-|g(x)-f(x)|`

A

f(x) + g(x) - |g(x) - f(x)|

B

f(x) + g(x) + |g(x) - f(x)|

C

f(x) - g(x) + |g(x) - f(x)|

D

f(x) - g(x) - |g(x) - f(x)|

Text Solution

Verified by Experts

The correct Answer is:
D

`f : R rarr R, g : R rarr R`
f(x) = 2 min f(x) - g(x), 0
Let f(x) - g(x) `gt` 0, then
F(x) = f(x) - g(x) - |f(x) - g(x)| and f(x) - g(x) `lt` 0, then
F(x) = 2[F(x) - g(x)] = [f(x) - g(x)] - |f(x) - g(x)|
Promotional Banner

Similar Questions

Explore conceptually related problems

If f: R rarr R and g:R rarr R are one-to-one, real valued functions, then the value of the integral int_(-pi)^(pi) [f(x)+f(-x)][g(x)-g(-x)]dx =

int f(x) dx = g(x) , then int f(x)g(x) dx =

f(x) and g(x) are two differentiable functions on [0,2] such that f^('')(x) - g^('')(x) = 0 , f^(')(1) = 4, g^(')(1) =2, f(2) = 9, g(2) =3 , then f(x) - g(x) at x = 3/2 is

Let f : R to R and g : R to R be continuous functions. Then the value of : int_(-pi//2)^(pi//2) [f (x) + f(-x)][g(x) - g(-x)]dx is :

If f(x) is differentiable increasing function, then lim_(x to 0) (f(x^(2)) -f(x))/(f(x)-f(0)) equals :

If g is the inverse function of f and f'(x) = sin x then g'(x) =

Let f be twice differentiable function such that f^('')(x) = -f(x) and f^(')(x) = g(x) . Also h(x) = [f(x)]^(2) + [g(x)]^(2). If h(4) = 7, then h(7) =