Home
Class 12
MATHS
If f(x) = (x^(2)-x)/(x^(2)+2x), then d/d...

If `f(x) = (x^(2)-x)/(x^(2)+2x)`, then `d/dx [f^(-1)(x)] =`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`f(x)=(x^(2)-x)/(x^(2)+2x)" ... (i)"`
`f(x)=(x(x-1))/(x(x+2))`
`f(x)=((x-1))/((x+2)),xne0" ... (ii)"`
`D_(f)={x:x^(2)+2xne0}` [from Eq. (i)]
`={x:x inR-{0, -2}}`
Now, let `y=(x-1)/(x+2)`
`implies yx+2y=x-1impliesx(y-1)=-(1+2y)`
implies `x=(1+2y)/(1-y)`
Now, for y = 1, x is not defined.
Now, `x = 0, f(x)=-(1)/(2)`
`therefore R_(f)=R-{1,-(1)/(2)}`
Now, let `x_(1),x_(2)inD_(f)`
Then, `f(x_(1))=f(x_(2))implies(x_(1)-1)/(x_(1)+2)=(x_(2)-1)/(x_(2)+2)` `impliesx_(1)x_(2)+2x_(1)-x_(2)-2=x_(1)x_(2)-x_(1)+2x_(2)-2`
`implies x_(1)=x_(2)`
`therefore` f is one-one function.
Now, let `y=(x-1)/(x+2)`
Then, `x=(1+2y)/(1-y)`
`implies f^(-1)(y)=(1+2y)/(1-y)" "[because f(x)=yimpliesx=f^(-1)(y)]`
Replace y be x, we get `f^(-1)(x)=(1+2x)/(1-x)`
`implies (d)/(dx){f^(-1)(x)}=((1-x)2-(1+2x)(-1))/((1-x)^(2))`
`=(2-2x+1+2x)/((1-x)^(2))`
`implies (d)/(dx){f^(-1)(x)}=(3)/((1-x)^(2))`
`therefore` Domain of `(d)/(dx){f^(-1)(x)}=R-{1}`
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = ((e^(2x)-1)/(e^(2x)+1)) is

If f(x)=(2^(x)-2^(-x))/(2^(x)+2^(-x)),"then"f^(-1)(x) is :

Let f(x) be defined by f(x) = {{:((|x^(2) - x|)/(x^(2) - x),x ne 0"," 1),(1, x = 0),(-1,x = 1):} Then f(x) is continuous for all :

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)), x ne 0, then f(x)=

If f(x) = 1+x + x^(2)/2 + …. + x^(100)/100 , then f^(')(1) is equal to

If f(x) = int (x^(2)+sin^(2)x)/(1+x^(2)) sec^(2)x dx and f(0) = 0, then f(1) =