Home
Class 12
MATHS
If X={4^(n)-3n-1:ninN}andy={9(n-1):ninN}...

If `X={4^(n)-3n-1:ninN}andy={9(n-1):ninN}`, then `X uu Y` equals

A

X

B

Y

C

N

D

Y - X

Text Solution

Verified by Experts

The correct Answer is:
B

Since, `4^(n)-3n-1=(1+3)^(n)-3n-1`
`=(1+.^(n)C_(1).3+.^(n)C_(2).3^(2)+.^(n)C_(3).3^(3)+...+.^(n)C_(n).3^(n))-3n-1`
`=3^(2)(.^(n)C_(2)+.^(n)C_(3).3+...+.^(n)C_(n).3^(n-2))`
`implies 4^(n)-3n-1` is a multiple of 9 for `n ge 2`
For `n = 1, 4^(n) - 3n - 1 = 4 - 3 - 1 = 0`
For `n = 2, 4^(n) - 3n - 1 = 16 - 6 - 1 = 9`
`therefore 4^(n) - 3n - 1` is multiple of 9 for all `n in N`.
It is clear that X contains elements, which are multiples of 9 and Y contains all multiples of 9.
`therefore XsubeY " i.e., " XuuY=Y`
Promotional Banner

Similar Questions

Explore conceptually related problems

If X={4^n -3n-1 , n in N} and Y={9(n-1), n in N} , then X uu Y is :

If X={8^n -7n-1 : n in N} and Y={49 (n-1) | n in N}, then

If X={4^n -3n-1 , n in N} and Y={9(n-1), n in N} , where N is the set of natural numbers, then X uu Y is equal to :

If N_(a)={an:ninN} , then N_(5) nn N_(7) equals

If A and B are coefficients of x^(n) in the expansion of (1+x)^(2n) and (1+x)^(2n-1) respectively, then A/B equals:

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

If {:X=[(3,-4),(1,-1)]:} , the value of X^n is equal to

If underset(x to 0)lim""(x^(n)sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite, then n equals :

If A = [(1,1),(1,1)] and n in N , then A^(n) equals :

The fourth term in binomial expansion of (x^(2)-(1)/(x^(3)))^(n) in independent of x, when n is equal to: