Home
Class 12
MATHS
If veca=hati+hatj+hatk, vecb=4hati+3hatj...

If `veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk` and `vecc=hati+alphahatj+betahatk`
are linearly dependent vectors and `|vecc|=sqrt(3)` then:

A

(a) `alpha=1,beta=-1`

B

(b) `alpha=1,beta=+-1`

C

(c) `alpha=+-1,beta=+-1`

D

(d) `alpha=+-1,beta=1`

Text Solution

Verified by Experts

The correct Answer is:
D

The given vectors are linearly dependent, hence there exist scalars x,y and z not all zero, such that
`xa+yb+zc=0`
i.e., `x(hati+hatj+hatk)+y(4hati+3hatj+4hatk)+z(hati+alphahatj+betahatk)=0`
i.e., `(x+4y+z)hati+(x+3y+alphaz)hatj+(x+4y+betaz)hatk=0`
`impliesx+4y+z=0, x+3y+alphaz=0,x+4y+betaz=0`
For non-trivial solution `|(1,4,1),(1,3,alpha),(1,4,beta)|=0implies beta=1`
`|c|^(2)=3implies1+alpha^(2)+beta^(2)=3`
`impliesalpha^(2)=2-beta^(2)=2-1=1`
`thereforealpha=+-1`
Trick `|c|=sqrt(1+alpha^(2)+beta^(2))=sqrt(3)`
`implies alpha^(2)+beta^(2)=2`
`because` a,b and c are linearly dependent, hence `|(1,1,1),(4,3,4),(4,alpha,beta)|=0`
`impliesbeta=1`
`thereforealpha^(2)=1impliesalpha=+-1`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=-4hati-6hatj-lamdahatk,vecb=-hati+4hatj+3hatk and vecc=-8hati-hatj+3hatk are coplanar find lamda

Let veca = 2hati + hatj -hatk , vecb = hati + 2hatj - hatk , and vecc = hati + hatj - 2hatk , be three vectors . A vector in the plane of b and c whose projection an a is of magnitude sqrt(2//3) is

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

Show that the vectors 2hati-3hatj+4hatk and -4hati+6hatj-8hatk are collinear.

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

If vecA=3hati+2hatj and vecB=4hatj-5hatk then find |vecA+vecB|

If vecA=3hati+2hatj and vecB=4hatj-5hatk then find |vecA-vecB|