Home
Class 12
MATHS
Let O, O' and G be the circumcentre, ort...

Let O, O' and G be the circumcentre, orthocentre and centroid of a `Delta ABC` and S be any point in the plane of the triangle.
Statement -1: `vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O)`
Statement -2: `vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)`

Text Solution

Verified by Experts

The correct Answer is:
B

`O'A=O'O=OA`
`O'B=O O'+OB`
`O'C=O'O+OC`
`impliesO' A+O'B + O'C=3O'O+OA+OB+OC`

Since, `OA+OB+OC=O O'=-O'O`
`therefore O'A+O'B+O'C=2O'O`
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1 : In DeltaABC , vec(AB) + vec(BC) + vec(CA) = 0 Statement 2 : If vec(OA) = veca, vec(OB) = vecb , then vec(AB) = veca + vecb

If |vec(a)| = 3, |vec(b) = 4 and |vec(a) + vec(b)| = 1 , then |vec(a) - vec(b)| =

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

If A, B and C are the vertices of a triangle ABC, then what is the value of vec(AB) + vec(BC) + vec(CA) ?

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =

If two vectors vec(a) and vec(b) such that |vec(a)| = 2|vec(b)| = 3 and vec(a).vec(b) = 6 , find |vec(a)-vec(b)| .

If A, B, C are the vertices of a triangle whose position vectors are vec a, vec b, vec c and G is the centroid of the triangle ABC, then vec GA + vec GB + vec GC =

The inverse of the statement " If vec a = vec = 0 or vec b =vec 0 then vec a xx vec b =vec 0 is

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

If two vectors |vec(a)| = 2, |vec(b)| = 1 and vec(a).vec(b) = 1 , then find the value of (3vec(a) - 5vec(b)).(2vec(a) + 7vec(b)) .