Home
Class 12
MATHS
In a regular hexagon A B C D E F ,\ A ve...

In a regular hexagon `A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ Cvec D=vecC.T h e n\ vec A E=`

A

`2b-a`

B

`b-a`

C

`2a-b`

D

`a+b`

Text Solution

Verified by Experts

The correct Answer is:
A

As in figure, `AB=a,BC=b`,
So, `AD=2b and ED=a`

Now, `AE+ED=AD`
`impliesAE=AD-ED=2b-a`
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a xx vec b = vec c and vec b xx vec c = vec a then

[vec a + vec b vec b + vec c vec c + vec a] =

vec a .[(vec b + vec c) xx (vec a + vec b + vec c)] =

(vec b xx vec c) xx (vec c xx vec a ) =

If vec a, vec b, vec c, vec d are the vertices of a square then

If vec a + 2 vec b + 3 vec c = vec 0 , then (vec a xx vec b)+ (vec b xx vec c) + (vec c xx vec a) =

The vec a, vec b, vec c are three vectors which are respectively perpendicular to vec b + vec c, vec c + vec a and vec a + vec b , such that |vec a| =3, |vec b| = 4, |vec c| = 5 , then |vec a + vec b + vec c|=

If vec a, vec b, vec c are non coplanar vectors such that, vec b xx vec c = vec a, vec c xx vec a = vec b, vec a xx vec b = vec c , then |vec a + vec b + vec c| =

vec a, vec b, vec c are three vectors such that vec a + vec b + vec c = 0, |vec a| =1, |vec b| = 2, |vec c| =3 , then vec a . vec b + vec b . vec c + vec c . vec a =