Home
Class 12
MATHS
Let A and B be points with position vect...

Let `A` and `B` be points with position vectors `veca` and `vecb` with respect to origin `O`. If the point `C` on `OA` is such that `2vec(AC)=vec(CO), vec(CD) ` is parallel to `vec(OB)` and `|vec(CD)|=3|vec(OB)|` then `vec(AD)` is

A

`3b-(a)/(2)`

B

`3b+(a)/(2)`

C

`3b-(a)/(3)`

D

`3b+(a)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

Since, `OA=a,OB=b and 2AC=CO`
by section formula, `OC=(2)/(3)a`
Therefore, `|CD|=3|OB|`
`impliesCD=3b`
`impliesOD=OC+CD=(2)/(3)a+3b`
Hence, `AD=OD-OA=(2)/(2)a+3b-a`
`=3a-(1)/(3)a`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are position vectors of A and B respectively, then the position vector of a point C in AB produced such ahat vec(AC) = vec(3AB) is :

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

Vectors drawn the origin O to the points A , B and C are respectively vec a , vec b and vec4a- vec3bdot find vec (AC) and vec (BC)

If vec(a) and vec(b) are two vectors such that |vec(a) + vec(b)| = |vec(a)| , then prove tat 2vec(a) + vec(b) is perpendicular to vec(b) .

Prove that [vec(a)+vec(b),vec(b)+vec( c) , vec( c) +vec(a)] =2 [vec(a),vec(b),vec(c )] .

Statement 1 : In DeltaABC , vec(AB) + vec(BC) + vec(CA) = 0 Statement 2 : If vec(OA) = veca, vec(OB) = vecb , then vec(AB) = veca + vecb

The three points whose position vectors are vec a - vec 2b + 3 vec c, vec 2a + vec 3b - 4 vec c and - 7 vec b + 10 vec c

If vec(a), vec(b) and vec(c ) are three unit vectors such that vec(a).vec(b) = vec(a).vec(c ) = 0 and angle between vec(b) and vec(c ) is (pi)/(6) , prove that vec(a) = +-2(vec(b) xx vec(c )) .