Home
Class 12
MATHS
In a quadrilateral P Q R S , vec P Q= ve...

In a quadrilateral `P Q R S , vec P Q= vec a , vec Q R = vec b , vec S P= vec a- vec b ,M` is the midpoint of ` vec Q Ra n dX` is a point on `S M` such that `S X=4/5S Mdot` Prove that `P ,Xa n dR` are collinear.

A

`PX=(1)/(5)PR`

B

`PX=(3)/(5)PR`

C

`PX=(2)/(5)PR`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

If we take point P as the origin, the position vectors of Q and S are a and b-a respectively.
In `DeltaPQR`, we have

`PR=PQ+QR impliesPR=a+b`
`therefore`Position vector of R=a+b
`impliesPV` or `M=(a+(a+b))/(2)=(a+(1)/(2)b)`
Now, `SX=(4)/(5)SM`
`impliesXM=SM-SX=SM-(4)/(5)SM=(1)/(5)SM`
`thereforeSX:XM=4:1`
`impliesPV` of `X=(4(a+(1)/(2)b)+1(b-a))/(4+1)`
`=(3a+2b)/(5)impliesPX=(3)/(5)(a+b)`
`impliesPX=(3)/(5)PR`
Promotional Banner

Similar Questions

Explore conceptually related problems

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ Cvec D=vecC.T h e n\ vec A E=

If vec a and vec b are not perpendicular to each other and vec r xx vec a = vec b xx vec a, vec r. vec c = vec 0 then vec r =

If vec(a) bot vec(b) and (vec(a) + vec(b)) bot (vec(a) + mvec(b)) , then m=

The angle between vecP and the resultant of ( vec P + vec Q) and ( vec P - vec Q) is

If |vec a| = 3, |vec b| = 5, and |vec c| = 4 and vec a + vec b + vec c = vec O then the value of (vec a . vec b + vec b . vec c + vec c .vec a ) =

Statement 1: if three points P ,Qa n dR have position vectors vec a , vec b ,a n d vec c , respectively, and 2 vec a+3 vec b-5 vec c=0, then the points P ,Q ,a n dR must be collinear. Statement 2: If for three points A ,B ,a n dC , vec A B=lambda vec A C , then points A ,B ,a n dC must be collinear.

The three points whose position vectors are vec a - vec 2b + 3 vec c, vec 2a + vec 3b - 4 vec c and - 7 vec b + 10 vec c

If a = 3,b = 4, c = 5 each one of vec a, vec b and vec c is perpendicular to the sum of the remaining then |vec a + vec b + vec c| is equal to

If vec p, vec q, vec r are any three vectors, which of the following is not correct

Statement 1: | vec a|=3,| vec b|=2 a n d| vec a+ vec b|=5,t h e n| vec a- vec b|=5. Statement2: The length of the diagonals of a rectangle is the same.