Home
Class 12
MATHS
Let veca=(1,1,-1), vecb=(5,-3,-3) and ve...

Let `veca=(1,1,-1), vecb=(5,-3,-3)` and `vecc=(3,-1,2)`. If `vecr` is collinear with `vecc` and has length `(|veca+vecb|)/(2)`, then `vecr` equals

A

`+-3c`

B

`+-(3)/(2)c`

C

`+-c`

D

`+-(2)/(3)c`

Text Solution

Verified by Experts

The correct Answer is:
C

let `r=lamdac`
Given `|r|=|lamda||c|`
`therefore(|a+c|)/(2)=|lamda||c|`
`therefore|6hati-2hatj-4hatk|=2|lamda|3hati-hatj+2hatk|`
`therefore sqrt(56)=2|lamda|sqrt(14)`
`therefore lamda=+-1`
`therefore r=+-c`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If | veca | =2, |vecb| =5 and | veca xx vecb| =8, then veca.vecb equals :

If |veca| =8, |vecb| =3 and |veca xx vecb|=12, then veca.vecb is :

Let veca, vecb and vecc be three non-zero vectors such that no two of these are collinear.If the vector veca + 2 vecb is collinear with vecc and vecb +3 vecc is collinear with veca (lamda being some non-zero scalar), then veca + 2 vecb + 6 vecc equals:

If [vecaxx vecb vecb xx vecc vecc xx veca] = lamda [veca vecb vecc]^(2), then lamda is equal to :

Let veca = hat i + hatj + hatk, vecb = hati + 2 hatk and vecc = x hati + (x -2) hatj + hatk. If the vector vecc lies in the plane of veca and vecb, then x equals :

If |vecaxxvecb|+|veca.vecb|^(2)=144 and |veca|=6 , then |vecb| is equal to

If |vecaxxvecb|=4 and |veca*vecb|=2 then |veca|^(2)|vecb|^(2)=

If vecA = (1,1,1), vecC= (0,1,-1) are two given equation vecA xx vecB = vec C, vecA . vecB =3 is :

If veca,vecb,vecc are mutually perpendicular unit vectors then |veca+vecb+vecc| is equal to