Home
Class 12
MATHS
In a trapezium ABCD the vector B vec C ...

In a trapezium ABCD the vector `B vec C = lambda vec(AD).` If `vec p = A vec C + vec(BD)` is coillinear with `vec(AD)` such that `vec p = mu vec (AD),` then

A

`mu=lamda+1`

B

`lamda=mu+1`

C

`lamda+mu=1`

D

`mu=2+lamda`

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `p=AC+BD=AC+BC+CD`
`=AC+lamdaAD+CD`
`=lamdaAD+(AC+CD)=lamdaAD+AD=(lamda+1)AD`
Therefore, `p=muAD impliesmu=lamda+1`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a xx vec b = vec c and vec b xx vec c = vec a then

Let vec a, vec b and vec c be three non zero vectors such that no two of these are collinear. If the vector vec a + 2 vec b is collinear with vec c and vec b + 3 vec c is collinear with vec a then vec a + 2 vec b + 6 vec c =

If vec a and vec b are unit vectors such that |vec a + vec b| =1, then |vec a - vec b| =

Let vec a = i-j, vec b = j-k, vec c = k-i . If vec d is a unit vectors such that vec a. vec d = 0 = [vec b vec c vec d] , then vec d =

(vec b xx vec c) xx (vec c xx vec a ) =

If vec a, vec b, vec c are three vectors such that vec a . (vec b + vec c) + vec b . (vec c + vec a) + vec c . (vec a + vec b) = 0 and |vec a| = 1, |vec b | = 4, |vec c| = 8 , then |vec a + vec b + vec c| =

[vec a + vec b vec b + vec c vec c + vec a] =

If (vec a xx vec b) xx vec c = vec a xx (vec b xx vec c) , where vec a, vec b and vec c are any three vectors such that vec a. vec b ne 0, vec b . vec c ne 0 , then vec a and vec c are

The vec a, vec b, vec c are three vectors which are respectively perpendicular to vec b + vec c, vec c + vec a and vec a + vec b , such that |vec a| =3, |vec b| = 4, |vec c| = 5 , then |vec a + vec b + vec c|=