Home
Class 12
MATHS
The number of distinct real values of la...

The number of distinct real values of `lamda` for which the vectors `veca=lamda^(3)hati+hatk, vecb=hati-lamda^(3)hatj` and `vecc=hati+(2lamda-sin lamda)hatj-lamdahatk` are coplanar is

A

(a)0

B

(b)1

C

(c)2

D

(d)3

Text Solution

Verified by Experts

The correct Answer is:
A

Put `Delta=0 implies lamda^(7)+lamda^(3)+2lamda-sinlamda=0`
Let `f(lamda)=lamda^(7)+lamda^(3)+2lamda-sinlamda`
`impliesf(lamda)=(7lamda^(6)+3lamda^(2)+2-coslamda) gt0, AA in R`
`thereforef(lamda)=0` has only one real solution `lamda=0`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real values of lamda, for which the vectors : -lamda ^(2) hati+hatj+ hatk, hati - lamda ^(2) hatj+ hatk and hati + hatj- lamda ^(2) hatk are coplanar, is :

The vectors lamda hati + hatj + 2 hatk, hati + lamda hatj - hatk and 2 hati - hatj + lamda hatk are coplanar if :

Find lambda, if the vectors veca=hati+3hatj+hatk , vecb=2hati-hatj-hatk and vecc=lambdahati+7hatj+3hatk are coplaner.

If veca=-4hati-6hatj-lamdahatk,vecb=-hati+4hatj+3hatk and vecc=-8hati-hatj+3hatk are coplanar find lamda

The vector veca = hati + hatj + (m + 1) hatk , vecb = hati + hatj + m hatk.vecc = hati - hatj + m hatk are coplanar for :

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

Find the sum of the vectors veca=hati-2hatj+hatk,vecb=-2hati+4hatj+5hatkandvecc=hati-6hatj-7hatk .

The value of 'lamda' which the vectors : 3 hati - 6 hatj + hatk and 2 hati - 4 hatj + lamda hatk are parallel is :

The valur of 'lamda' for which the two vectors : 2 hati - ahtj + 2 hatk and 3 hati + lamda hatj + ahtk are perpendicular is :

The value of lamda for which the four points 2hati+3hatj-hatk,hati+2hatj+3hatk,3hati+4hatj-2hatk and hati-lamdahatj+6hatk are coplanar.