Home
Class 12
MATHS
p=2a-3b,q=a-2b+c and r=-3a+b+2c, where a...

`p=2a-3b,q=a-2b+c` and `r=-3a+b+2c`, where `a,b,c` being non-coplanar vectors, then the vector `-2a+3b-c` is equal to

A

(a) `p-4q`

B

(b) `(-7q+r)/(5)`

C

(c) `2p-3q+r`

D

(d) `4p-2r`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `-2a+3b-c=xp+yq+zr`
`implies-2a+3b-c=(2x+y-3z)a+(-3x-2y+z)b+(y+2z)c`
`therefore 2x+y-3z=-2,-3x-2y+z=3`
and `y+2z=-1`
On solving these we get `x=0,y=-(7)/(5),z=(1)/(5)`
`therefore-2a+3b-c=((-7q+r))/(5)`
trick check alternates one-by-ne
ie.., (a) `p-4q=-2a+5b-4c`
(b) `(-7q+r)/(5)=-2a+3b-c`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b and c are non-coplanar vectors, prove that 3a-7b-4c, 3a-2b+c and a+b+2c are coplanar.

If vec a, vec b, vec c non zero coplanar vectors, then, [2 vec a - vec b 3 vec b - vec c 4 vec c - vec a] =

If a +b+c = alphad, b+c+d=beta a and a, b, c are non-coplanar, then the sum of a +b+c+d =

If 1/a,1/b,1/c are in A.P and a,b -2c, are in G.P where a,b,c are non-zero then

Show that the vectors a-2b+4c,-2a+3b-6c and -b+2c are coplanar vector, where a,b,c are non-coplanar vectors.

If the points P(vec a + 2 vec b + vec c), Q (2 vec a + 3 vec b), R(vec b + t vec c) are collinear, where vec a, vec b, vec c are three non-coplanar vectors, the value of t is

If veca, vecb, vecc are non-coplanar vectors and lamda is a real number, then the vectors veca + 2 vecb + 3 vec c , lamda vecb + mu vec c and (2 lamda -1) vecc ar non-coplanar for:

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

If vec a, vec b and vec c are non coplanar unit vectors such that vec a xx (vec b xx vec c) = (vec b + vec c)/sqrt2 , then

Let a,b,c are three vectors of which every pair is non-collinear, if the vectors a+b and b+c are collinear with c annd a respectively, then find a+b+c.