Home
Class 12
MATHS
vec a , vec b , vec c are three coplanar...

` vec a , vec b , vec c` are three coplanar unit vectors such that ` vec a+ vec b+ vec c=0.` If three vectors ` vec p , vec q ,a n d vec r` are parallel to ` vec a , vec b ,a n d vec c ,` respectively, and have integral but different magnitudes, then among the following options, `| vec p+ vec q+ vec r|` can take a value equal to

A

1

B

0

C

`sqrt(3)`

D

2

Text Solution

Verified by Experts

The correct Answer is:
C, D

Let a,b and c lie in the XY-plane
Let `a=hati,b=-(1)/(2)hati+(sqrt(3))/(2)hatj and c=-(1)/(2)hati-(sqrt(3))/(2)hatj`
Therefore, `|p+q+r|=|lamda a+mub+vc|`
`=|lamdahati+mu(-(1)/(2)hati+(sqrt(3))/(2)hatj)+v(-(1)/(2)hati-(sqrt(3))/(2)hatj)|`
`|(lamda+(mu)/(2)-(v)/(2))hati+(sqrt(3))/(2)(mu-v)hatj|`
`=sqrt((lamda-(mu)/(2)-(v)/(2))^(2)+(3)/(4)(mu-v)^(2))`
`=sqrt(lamda^(2)+mu^(2)+v^(2)-lamdamu-lamdav-muv)`
`=(1)/(sqrt(2))sqrt((lamda-mu)^(2)+(mu-v)^(2)+(v-lamda)^(2))`
`=(1)/(sqrt(2))sqrt(1+1+4)=sqrt(3)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a, vec b and vec c are non coplanar unit vectors such that vec a xx (vec b xx vec c) = (vec b + vec c)/sqrt2 , then

If vec a, vec b, vec c are mutually perpendicular unit vectors then |vec a + vec b + vec c| =

If vec a and vec b are unit vectors such that |vec a + vec b| =1, then |vec a - vec b| =

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 , then the value of vec a . vec b + vec b.vec c + vec c vec a is equal to

If vec a, vec b, vec c are non coplanar vectors such that, vec b xx vec c = vec a, vec c xx vec a = vec b, vec a xx vec b = vec c , then |vec a + vec b + vec c| =

Let vec a, vec b, vec c be unit vectors such that vec a + vec b + vec c = vec 0 . Which one of the following is correct?

If vec a, vec b, vec c are three vectors such that vec a + vec b + vec c = vec 0 and |vec a| = 2, |vec b| = 3, |vec c| = 5 , then the value of vec a . vec b + vec b . vec c + vec c . vec a =

vec a, vec b, vec c are three vectors such that vec a + vec b + vec c = 0, |vec a| =1, |vec b| = 2, |vec c| =3 , then vec a . vec b + vec b . vec c + vec c . vec a =