Home
Class 12
MATHS
If non-zero vectors veca and vecb are eq...

If non-zero vectors `veca and vecb` are equally inclined to coplanar vector `vecc`, then `vecc` can be

A

`(|a|)/(|a|=2|b|)a+(|b|)/(|a|+|b|)b`

B

`|b|/(|a|+|b|)a+|a|/(|a|+|b|)b`

C

`(|a|)/(|a|+|b|)a+(|b|)/(|a|+2|b|)b`

D

`(|b|)/(2|a|+|b|)a+(|a|)/(2|a|+|b|)b`

Text Solution

Verified by Experts

The correct Answer is:
B, D

Since, a and b are equally inclined to c, therefore c must be of the form `t((a)/(|a|)+(b)/(|b|))`
Now, `(|b|)/(|a|+|b|)a+(|a|)/(|a|+|b|)b=(|a||a|)/(|a|+|a|)((a)/(|a|)+(b)/(|b|))`
Also, `(|b|)/(2|a|+|b|)a+(|a|)/(2|a|+|b|)b=(|a||b|)/(2|a|+|b|)((a)/(|a|)+(b)/(|b|))`
Other two vectors cannot be written in the form `t((a)/(|a|)+(b)/(|b|))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The non-zero vectors veca, vecb and vecc are related by veca = 8 vecb and vecc=-7 vecb. Then the angle between veca and vecc is :

If the non-zero vectors veca and vecb are perpendicular to each other, then the solution of the equation vecr xx veca = vecb is :

If veca and vecb are mutually perpendicular unit vectors , then (3veca+2vecb).(5veca-6vecb)=

Given three vectors veca, vecb and vecc are non-zero and non-coplanar vectors. Then which of the following are coplanar.

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =

If veca, vecb and vecc are any three non-coplanar vectors, then prove that points l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc are coplanar if |{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=

The vectors veca and vecb are not perpendicular and vecc and vecd are two vectors satisfying vecb xx vecc = vecb xx vecd and veca.vecd=0. Then the vector vecd is equal to :

Let veca , vecb,vecc be three non zero vectors which are pair wise non collinear and veca+vec3b is colinear with vecc and vecb+vec2c is colinear with veca then veca+3b+6vecc is

If vecu, vecv and vecw are three non-coplanar vectors, then : (vecu + vecc- vecw). (vecu - vecv) xx (vecv-vecw) equals :