Home
Class 12
MATHS
Statement 1: | vec a|=3,| vec b|=2 a n d...

Statement 1: `| vec a|=3,| vec b|=2 a n d| vec a+ vec b|=5,t h e n| vec a- vec b|=5.` Statement2: The length of the diagonals of a rectangle is the same.

A

Statement-II and statement II ar correct and Statement III is the correct explanation of statement I

B

Both statement I and statement II are correct but statement II is not the correct explanation of statement I

C

Statement I is correct but statement II is incorrect

D

Statement II is correct but statement I is incorrect

Text Solution

Verified by Experts

The correct Answer is:
A

We have, adjacent sides of triangle `|a|=3,|b|=4`
the length of the diagonal is `|a+b|=5`
Since, it satisfies the Pythagoras theorem, `a bot b`
So, the parallelogram is a rectangle.
Hence, the length of the other diagonal is `|a-b|=5`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If |vec a| = 2, |vec b| = 5 and |vec a xx vec b| = 8 then vec a . vec b

If |vec a| =5, |vec b| =6, vec a . vec b = 24 then |vec a xx vec b| =

Statement 1: If | vec a+ vec b|=| vec a- vec b|,t h e n vec aa n d vec b are perpendicular to each other. Statement 2: If the diagonal of a parallelogram are equal magnitude, then the parallelogram is a rectangle.

If |vec a xx vec b| = 4 and |vec a . vec b| = 2, then |vec a|^(2) . |vec b|^(2) =

If |vec a| = 10, |vec b| = 2 and vec a . vec b = 12 then the value of |vec a xx vec b| is

If |vec(a)| = 3, |vec(b) = 4 and |vec(a) + vec(b)| = 1 , then |vec(a) - vec(b)| =

If |vec a + vec b|^(2) = |vec a|^(2) +|vec b|^(2) , then

If 2 vec a . vec b = |vec a|.|vec b| then the between vec a and vec b is

[vec a + vec b vec b + vec c vec c + vec a] =