Home
Class 12
MATHS
A particle, in equilibrium, is subjected...

A particle, in equilibrium, is subjected to four forces `vecF_1, vecF_2, vecF_3` and `vecF_4`, ` vec F_1 =-10 hat k , vec F _2 =u(4/13 hat i-12/13 hat j+3/13 hatk) , vec F _3 =v(-4/13 hat i-12/13 hat j+3/13 hatk), vec F_4 =w(cos theta hat i+sin theta hat j) ` then find the values of u,v and w

Text Solution

Verified by Experts

Since, the particle is in equilibrium.
`F_(1)+F_(2)+F_(3)+F_(4)=0`
`-10hatk+u((4)/(13)hati-(12)/(13)hatj+(3)/(13)hatk)+v(-(4)/(13)hati-(12)/(13)hatj+(3)/(13)hatk)+w(costhetahati+sinthetahatj)=0`
`implies((4u)/(13)-(4v)/(13)+wcostheta)hati+((-12)/(13)u-(12)/(13)v+wsintheta)hatj+((3)/(13)u+(3)/(13)v-10)hatk=0`
`implies(4u)/(13)-(4v)/(13)+wcostheta=0` . . . (i)
`-(12)/(13)u-(12)/(13)v+wsintheta=0` . . . (ii)
`(3)/(13)u+(3)/(13)v-10=0`
From Eq. (iii), we get `u+v=(130)/(3)`
From eq. (ii), we get
`-(12)/(13)(u+v)+wsintheta=0`
`implies-(12)/(13)((130)/(3))+wsintheta=0`
`implies w=(40)/(sintheta)=40` cosec `theta`
On substituting the value of w in eqs. (i) and (ii), we get
`u-v=-130cot theta`
and `u+v=(130)/(3)`
On solving we get
`u+(65)/(3)-65 cot theta`
`v+(65)/(3)+65cot theta and w=40" cosec "theta`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec A =2 hat i+ 3 hat j+ 8 hat k is perpendicular to vec B= 4 hat j -4 hat i+ alpha hat k , then the value of alpha

let vec a= ( hat i+ hat j+ hat k) then find the unit vector along this vector

Find vec a +vec b if vec a = hat i - hat j and vec b =2 hat i

If vec(AB) = 3hat(i) + 2hat(j) + 6hat(k), vec(OA) = hat(i) - hat(j) - 3hat(k) , find the value of vec(OB) .

If veca = 2 hat i + 3 hat j - hat k , vec b = hat i + 2 hat j - 5 hat k, vec c= hat 3i + 5 hatj = hat k , then a vector perpendicular to vec a and in the plane containing vec b and vec c is

if vec a= 2 hat i+ lambda hat j+ hat k and vec b= hat i+ 2 hat j+ 3 hat k are orthogonal then the value of lambda

let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find projection of vec a on vec b

If vec(a) = 2hat(i) + 2hat(j) + 3hat(k), vec(b) = -hat(i) + 2hat(j) + hat(k) and vec(c )=3hat(i)+2hat(j) such that vec(a)+lambda vec(b) is perpendicular to vec(c) , then find the value of lambda .

If a unit vector vec(a) makes an angle (pi)/(3) with hat(i), (pi)/(4) with hat(j) and a acute angle theta with hat(k) , then find the value of theta .

If vec(a) = 2hat(i) - hat(j) + 3hat(k) and vec(b) = (6hat(i) + lambda hat(j) + 9 hat(k)) and vec(a) is parallel to vec(b) , find the value of lambda .