Home
Class 12
MATHS
Find the all the values of lamda such th...

Find the all the values of lamda such that `(x,y,z)!=(0,0,0)`and `x(hati+hatj+3hatk)+y(3hati-3hatj+hatk)+z(-4hati+5hatj)=lamda(xhati+yhatj+zhatk)`

Text Solution

Verified by Experts

Here,
`(hati+hatj+hatk)x+(3hati-3hatj+hatk)y+(-4hati+5hatj)z=lamda(xhati+yhatj+zhatk)`
On comparing the coefficient of `hati,hatj and hatk`, we get
`x+3y-4z=lamdax`
`implies(1-lamda)x+3y-4z=0` . . . (i)
`x-3y+5z=lamda y`
`implies x-(3+lamda)y+5z=0` . . (ii)
`3x+y=lamdaz`
`implies 3x+y-lamdaz=0` . . . (iii)
The eqs. (i), (ii) and (iiI) will have a non-trivial solution, if
`|(1-lamda,3,-4),(1,-(3+lamda),5),(3,1,-lamda)|=0`
`[because (x,y,z)ne(0,0,0)thereforeDelta=0]`
`implies(1-lamda){lamda(3+lamda)-5}-3{-lamda-15}-4{1+3(lamda+3)}=0`
`implies(1-lamda){lamda^(2)+3lamda-5}-3{-lamda-15}-4{3lamda+10}=0`
`implies lamda^(3)+2lamda^(2)+lamda=0`
`implies lamda(lamda^(2)+2lamda+1)=0`
`implies lamda(lamda+1)^(2)=0`
`therefore lamda =0` or `lamda=-1`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real values of lamda, for which the vectors : -lamda ^(2) hati+hatj+ hatk, hati - lamda ^(2) hatj+ hatk and hati + hatj- lamda ^(2) hatk are coplanar, is :

Find the direction cosines of the resultant of the vectors (hati+hatj+hatk),(-hati+hatj+hatk),(hati-hatj+hatk) and (hati+hatj-hatk) .

The value of lamda for which the four points 2hati+3hatj-hatk,hati+2hatj+3hatk,3hati+4hatj-2hatk and hati-lamdahatj+6hatk are coplanar.

The value of 'lamda' which the vectors : 3 hati - 6 hatj + hatk and 2 hati - 4 hatj + lamda hatk are parallel is :

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

Find a unit vector in the direction of the resultant of the vectors (hati+2hatj+3hatk),(-hati+2hatj+hatk) and (3hati+hatj) .

Find the values of x,y and z so that the vectors veca=xhati+2hatj+zhatkandvecb=2hati+yhatj+hatk are equal .

Find the shortest distance betweeen the line l_(1) and l_(2) whose vector equations are vecr=hati+hatj+lamda(2hati-hatj+hatk) and vecr=2hati+hatj+lamda(3hati-5hatj+2hatk)

Find the volume of the parallelopiped whose terminal edges are hati-2hatj+hatk,2hati-3hatj+hatk" and "3hati+hatj-2hatk .

Find the scalar and vector products of two vectors. a = (3hati – 4hatj + 5hatk) and b = (– 2hati + hatj – 3hatk )