Home
Class 12
MATHS
If vec A and vec B are two vectors and ...

If ` vec A and vec B` are two vectors and `k` any scalar quantity greater than zero, then prove that `| vec A+ vec B|^2lt=(1+k)| vec A|^2+(1+1/k)| vec B|^2dot`

Text Solution

Verified by Experts

We know, `(1+k)|A|^(2)(1+(1)/(k))|B|^(2)`
`=|A|^(2)+k|A|^(2)+|B|^(2)+(1)/(k)|B|^(2)` . . . (i)
Also, `k|A|^(2)+(1)/(k)|B|^(2)ge2(k|A|^(2)*(1)/(k)|B|^(2))^((1)/(2))=1|A|*|B|` . . . (ii)
(since, arithmetic mean `ge` Geometric mean)
So, `(1+k)|A|^(2)+(1+(1)/(k))|B|^(2) ge |A|^(2)+|B|^(2)+2|A|*|B|`
`=(|A|+|B|)^(2)` [using eqs. (i) and (ii)]
And also, `|A|+|B| ge |A+B|`
hence, `(1+k)|A|^(2)+(1+(1)/(k))|B|^(2)ge|A+B|^(2)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) and vec(b) are two vectors such that |vec(a) + vec(b)| = |vec(a)| , then prove tat 2vec(a) + vec(b) is perpendicular to vec(b) .

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

If vec a ,\ vec b ,\ vec c be the vectors represented by the sides of a triangle, taken in order, then prove that vec a+ vec b+ vec c= vec0dot

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =

Let vec a, vec b and vec c be three vectors. Then scalar triple product [vec a, vec b, vec c]=

If vec a and vec b are unit vectors |vec a xx vec b| =1 then the angle between vec a and vec b is

If vec a = 3i-5j and vec b = 6i+3j are two vectors vec c a vector such that vec c = vec a xx vec b then |vec a| : |vec b| : |vec c| =

If vec a and vec b are unit vectors such that |vec a + vec b| =1, then |vec a - vec b| =

If vec a and vec b are vectors such that |vec a + vec b| = |vec a - vec b| , then the angle between vec a and vec b is