Home
Class 12
MATHS
Statement -1 : If a transversal cuts t...

Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then
`(OL)/(OA) + (OM)/(OB) =(ON)/(OC)`
Statement -2 : Three points with position vectors ` veca , vec b , vec c ` are collinear iff there exist scalars x, y, z not all zero such that `x vec a + y vec b +z vec c = vec 0, " where " x +y + z=0.`

Text Solution

Verified by Experts

We have,
ON=OL+LN=OL+OM` . . (i) ltb rgt Let `OL=xOA,OM=yOB` . . . (ii)
annd ON=zOC
so, `|OL|=x|OA|,|OM|=y|OB| and |ON|=z|OC|`
`thereforex(OL)/(OA),y=(OM)/(OB) and z=(ON)/(OC)`
`therefore` From Eqs. (i) and (ii), we have

`zOC=xOA+yOB`
`implies xOA+yOB-zOC=0`
`therefore`Points A,B and C are collinear, the sum of the coefficients of their PV must be zero.
`implies x+y-z=0`
i.e., `(OL)/(OA)+(OM)/(OB)=(ON)/(OC)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

The three points whose position vectors are vec a - vec 2b + 3 vec c, vec 2a + vec 3b - 4 vec c and - 7 vec b + 10 vec c

If vec a, vec b and vec c are non coplanar unit vectors such that vec a xx (vec b xx vec c) = (vec b + vec c)/sqrt2 , then

If vec a, vec b, vec c are non coplanar vectors such that, vec b xx vec c = vec a, vec c xx vec a = vec b, vec a xx vec b = vec c , then |vec a + vec b + vec c| =

If vec a ,\ vec b ,\ vec c be the vectors represented by the sides of a triangle, taken in order, then prove that vec a+ vec b+ vec c= vec0dot

If |vec a| = 4, |vec b| = 2, |vec c| = 6 and each of the angles between the vectors is 60^(o) then |vec a + vec b + vec c| =

Let vec a and vec b be two non collinear unit vectors. If vec u = vec a - (vec a . vec b) vec b and vec nu = vec a xx vec b , then |vec nu| =

If vec a = 3i-5j and vec b = 6i+3j are two vectors vec c a vector such that vec c = vec a xx vec b then |vec a| : |vec b| : |vec c| =

For any three vectors vec a, vec b, vec c the expression (vec a - vec b) . [(vec b - vec c ) xx (vec c - vec a)] =