Home
Class 12
MATHS
If veca, vecb and vecc are any three non...

If `veca, vecb and vecc` are any three non-coplanar vectors, then prove that points `l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc` are coplanar if `|{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0`

Text Solution

Verified by Experts

We know that, four points having position vectors, a,b,c and d are coplanar, if there exists scalarrs x,y,z and t such that
`xa+yb+zc+td=0` where x+y+z+t=0
So, the given points will be coplanar, if thre exists scalars x,y,z and t such that
`x(l_(1)a+m_(1)b+n_(1)c)+y(l_(2)a+m_(2)b+n_(2)c)+z(l_(3)a+m_(3)b+n_(3)c)+t(l_(4)a+m_(4)b+n_(4)c)=0`
where, `x+y+z+t=0`
`implies (l_(1)x+l_(2)y+l_(3)z+l_(4)t)a+(m_(1)x+m_(2)y+m_(3)z+m_(4)t)b+(n_(1)x+n_(2)y+n_(3)z+n_(4)t)c=0`
where, `x+y+z+t=0`
`l_(1)x+l_(2)y+l_(3)z+l_(4)t0` . . (i)
`m_(1)x+m_(2)y+m_(3)z+m_(4)t=0` . . (ii)
`n_(1)x+n_(2)y+n_(3)z+n_(4)t=0` . . (iii)
and x+y+z+t=0 . . (iv)
Eliminating x,y,z and t from above equation, we get
`|(l_(1),l_(2),l_(3),l_(4)),(m_(1),m_(2),m_(3),m_(4)),(n_(1),n_(2),n_(3),n_(4)),(1,1,1,1)|=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If A = [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] then Find A+I

If veca, vecb, vecc are non-coplanar vectors and lamda is a real number, then the vectors veca + 2 vecb + 3 vec c , lamda vecb + mu vec c and (2 lamda -1) vecc ar non-coplanar for:

If veca and vecb are mutually perpendicular unit vectors , then (3veca+2vecb).(5veca-6vecb)=

If veca,vecb and vecc are non-coplaner,then value of veca{(vecbxxvecc)/(3vecb.(veccxxveca))}-vecb.{(veccxxveca)/(2vecc.(vecaxxvecb))} is

If veca , vecb, vecc and vecd are unit vectors such that (veca xx vecb). (veccxx vecd) =1 and veca. Vecc= 1/2 then :

If the volume of the parallelepiped formed by three non-coplanar vector veca , vecb and vecc is 4 cubic units , then [veca xx vecb vecb xx vecc vecc xx vec a ] =