Home
Class 12
MATHS
Show that points with position vectors 2...

Show that points with position vectors `2veca-2vecb+3vecc,-2veca+3vecb-vecc` and `6veca-7vecb+7vecc` are collinear. It is given that vectors `veca,vecb` and `vecc` and non-coplanar.

Text Solution

Verified by Experts

The three points are collinear, if we can find `lamda_(1),lamda_(2) and lamda_(3),` such that
`lamda_(1)(a-2b+3c)+lamda_(2)(-2a+3b-c)+lamda_(3)`
`(4a-7b+7c)=0` with `lamda_(1)+lamda_(2)+lamda_(3)=0`
On equating the coefficient a,b and c separately to zero, we get
`lamda_(1)-2lamda_(2)+4lamda_(3)=0,-2lamda_(1)+3lamda_(2)-7lamda_(3)=0` and
`3lamda_(1)-lamda_(2)+7lamda_(3)=0`
On solving we get `lamda_(1)=-2,lamda_(2)=1,lamda_(3)=1`
so that, `lamda_(1)+lamda_(2)+lamda_(3)=0`
hence, the given vectors are collinear.
Promotional Banner

Similar Questions

Explore conceptually related problems

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

For non zero vectors veca,vecb, vecc (veca xx vecb). Vecc= |veca| |vecb||vecc| holds iff:

For any three vectors veca,vecbandvecc , prove that vectors veca-vecb,vecb-veccandvecc-veca are coplanar.

Prove that [veca+vecb, vecb+vecc, vecc+veca]=2[veca,vecb,vecc]

If veca+2vecb+3vecc=vecO , then vecaxxvecb+vecbxxvecc+veccxxveca=

Find |vecb| if ( veca +vecb) .( veca - vecb) =8 and |veca|= 8|vecb|

Prove that [veca+vecb vecb+vecc vecc+veca]= 2[veca vecb vecc]

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then