Home
Class 12
MATHS
If veca, vecb and vecc are non-coplanar ...

If `veca, vecb and vecc` are non-coplanar vectors, prove that the four points `2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc` are coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc]=

[veca+2vecb-vecc,veca-vecb,veca-vecb-vecc] =

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

For any three vectors veca,vecbandvecc , prove that vectors veca-vecb,vecb-veccandvecc-veca are coplanar.

If veca, vecb, vecc are non-coplanar vectors and lamda is a real number, then the vectors veca + 2 vecb + 3 vec c , lamda vecb + mu vec c and (2 lamda -1) vecc ar non-coplanar for:

If veca, vecb and vecc are any three non-coplanar vectors, then prove that points l_(1)veca+ m_(1)vecb+ n_(1)vecc, l_(2)veca+m_(2)vecb+n_(2)vecc, l_(3)veca+m_(3)vecb+ n_(3)vecc, l_(4)veca + m_(4)vecb+ n_(4)vecc are coplanar if |{:(l_(1),, l_(2),,l_(3),,l_(4)),(m_(1),,m_(2),,m_(3),,m_(4)), (n_1,,n_2,, n_3,,n_4),(1,,1,,1,,1):}|=0

Prove that [veca+vecb vecb+vecc vecc+veca]= 2[veca vecb vecc]

If veca,vecb and vecc are non-coplaner,then value of veca{(vecbxxvecc)/(3vecb.(veccxxveca))}-vecb.{(veccxxveca)/(2vecc.(vecaxxvecb))} is