Home
Class 12
MATHS
If A, B, C are the vertices of a triangl...

If A, B, C are the vertices of a triangle whose position vectors are `vec a, vec b, vec c` and G is the centroid of the triangle ABC, then `vec GA + vec GB + vec GC =`

A

0

B

`A+B+C`

C

`(a+b+c)/(3)`

D

`(a+b-c)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

Position vectors of vertices A,B and C of the `DeltaABC=a,b and c`. We know that, position vector of centroid of the triangle,
`G=(a+b+c)/(3)`.
Therefore, GA+GB+GC
`=(a-(a+b+c)/(3))+(b-(a+b+c)/(3))+(c-(a+b+c)/(3))`
`=(1)/(3)(2a-b-c+2b-a-c+2c-a-b)=0`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B and C are the vertices of a triangle ABC, then what is the value of vec(AB) + vec(BC) + vec(CA) ?

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =

The three points whose position vectors are vec a - vec 2b + 3 vec c, vec 2a + vec 3b - 4 vec c and - 7 vec b + 10 vec c

If vec a, vec b, vec c, vec d are the vertices of a square then

If vec a xx vec b = vec c and vec b xx vec c = vec a then

For any three vectors vec a, vec b, vec c the expression (vec a - vec b) . [(vec b - vec c ) xx (vec c - vec a)] =

If vec a, vec b, vec c are mutually perpendicular unit vectors then |vec a + vec b + vec c| =

[vec a + vec b vec b + vec c vec c + vec a] =