Home
Class 12
MATHS
' I ' is the incentre of triangle A B C ...

`' I '` is the incentre of triangle `A B C` whose corresponding sides are `a , b ,c ,` rspectively. `a vec I A+b vec I B+c vec I C` is always equal to a. ` vec0` b. `(a+b+c) vec B C` c. `( vec a+ vec b+ vec c) vec A C` d. `(a+b+c) vec A B`

A

0

B

(a+b+c)BC

C

(a+b+c)AC

D

(a+b+c)AB

Text Solution

Verified by Experts

The correct Answer is:
A

Let the incentre be at the origin and be
`A(p),B(q) and C(r)`. Then
`IA=p,IB=q and IC=r`
Incentre I is `(ap+bq+cr)/(a+b+c)`, where p=BC,q=AC and r=AB incentre is at the origin. Therefore,
`(ap+bq+cr)/(a+b+c)=0`,
or `ab+bq+cr=0`
`implies aIA+bIB+cIC=0`.
Promotional Banner

Similar Questions

Explore conceptually related problems

vec a .[(vec b + vec c) xx (vec a + vec b + vec c)] =

[vec a + vec b vec b + vec c vec c + vec a] =

(vec b xx vec c) xx (vec c xx vec a ) =

If vec a xx vec b = vec c and vec b xx vec c = vec a then

If any vector vec a xx (vec b xx vec c) + vec b xx (vec c xx vec a) + vec c xx (vec a xx vec b) =

If vec a = i + 2j, vec b = j +2k, vec c = i+2k then vec a . (vec b xx vec c) =

If vec a + 2 vec b + 3 vec c = vec 0 , then (vec a xx vec b)+ (vec b xx vec c) + (vec c xx vec a) =

If vec a, vec b , and vec c are vectors such that |vec b| = |vec c| , then {[(vec a + vec b) xx (vec a + vec c)] xx (vec b xx vec c)} . (vec b + vec c) =

If |vec a| = 3, |vec b| = 5, and |vec c| = 4 and vec a + vec b + vec c = vec O then the value of (vec a . vec b + vec b . vec c + vec c .vec a ) =