Home
Class 12
MATHS
If vecx and vecy are two non-collinear v...

If `vecx and vecy` are two non-collinear vectors and ABC is a triangle with side lengths a, b and c satisfying `(20a - 15b) vecx + ( 15b - 12c) vecy+ (12c - 20 a) (vecx xx vecy) = vec0`, then triangle ABC is

A

an acute angled triangle

B

an obtuse angled triangle

C

a right angled triangle

D

a scalane triangle

Text Solution

Verified by Experts

The correct Answer is:
C

Since x,y and `x xxy` are linearly independent, we have
`20a-15b-12c=12c-20a=0`
`implies (a)/(3)=(b)/(4)=(c)/(5)implies c^(2)=a^(2)+b^(2)`
Hence, `DeltaABC` is right angled.
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec x and vec y are two non-collinear vectors and a, b, and c represent the sides of a A B C satisfying (a-b) vec x+(b-c) vec y+(c-a)( vec x xx vec y)=0, then A B C is (where vec x X vec y is perpendicular to the plane of x and y ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

If vecx and vecy are two unit vectors and theta is the angle between them, then 1/2 | vecx - vec y| is :

For any three vectors vec a, vec b, vec c the expression (vec a - vec b) . [(vec b - vec c ) xx (vec c - vec a)] =

Let vec a and vec b be two non collinear unit vectors. If vec u = vec a - (vec a . vec b) vec b and vec nu = vec a xx vec b , then |vec nu| =

If any vector vec a xx (vec b xx vec c) + vec b xx (vec c xx vec a) + vec c xx (vec a xx vec b) =

If vec a = j-k and vec c = i-j-k . Then the vector vec b satisfying vec a xx vec b + vec c = vec 0 and vec a. vec b = 3 is

Angle between the vectors vec a and vec b , where vec a, vec b and vec c are unit vectors satisfying vec a + vec b + sqrt3 vec c = vec 0 is

If vec a ,\ vec b ,\ vec c be the vectors represented by the sides of a triangle, taken in order, then prove that vec a+ vec b+ vec c= vec0dot

In the triangle A B C, a=13, b=14, c=15 then sin (A)/(2)=