Home
Class 12
MATHS
Statement 1 : In DeltaABC, vec(AB) + vec...

Statement 1 : In `DeltaABC`, `vec(AB) + vec(BC) + vec(CA) = 0`
Statement 2 : If `vec(OA) = veca, vec(OB) = vecb`, then `vec(AB) = veca + vecb`

A

Both Statement I and Statement II are correct and statement II is the correct explanation of statement I

B

Both statement I and statement II are correct but statement II is not the correct explanation of statement I

C

Statement I is correct but statement II is incorrect

D

Statement II is correct but statement I is incorrect

Text Solution

Verified by Experts

The correct Answer is:
C

In `DeltaABC,AB+BC=AC=-CA`
or `AB+BC+CA=0`
OA+AB=OB is the triangle law of addition.
Hence, statement 1 is true and statement 2 is false.
Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of the statement " If vec a = vec = 0 or vec b =vec 0 then vec a xx vec b =vec 0 is

The contrapositive of the statement " If vec a = vec 0 or vec b = vec 0 then vec a xx vec b = vec 0 " is

[vec a + vec b vec b + vec c vec c + vec a] =

If OACB is a parallelogram with vec OC = vec a and vec AB = vec b then vec OA =

If veca .vecb = veca.vec cand veca xx vecb = veca xx vec c,veca ne0 , then

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

If vec u = vec a - vec b, vec nu = vec a + vec b and |vec a| = |vec b| =2 , then |vec u xx vec nu| is

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =