Home
Class 12
MATHS
If ABCDEF is a regular hexagon then vec ...

If ABCDEF is a regular hexagon then `vec AD + vec EB + vec FC = `

A

(a)2AB

B

(b)3AB

C

(c)4AB

D

(d)none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Consider the regular hexagon ABCDEF with centre at O (origin).

`AD+EB+FC=2AO+2OB+2OC`
`=2(AO+OB)+2OC`
`=2AB+2AB" "[becauseOC=AB]`
`=4AB`
`R=AB+AC+AD+AE+AF`
`=ED+AC+AD+AE+CD" "[becauseAB=ED and AF=CD]`
`=(AC+CD)+(AE+ED)+AD`
`=AD+AD+AD=3AD=6AO`
Promotional Banner

Similar Questions

Explore conceptually related problems

In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d\ Cvec D=vecC.T h e n\ vec A E=

If ABCD is a quadrilateral with vec AB = vec a, vec AD = vec b and vec AC = 2 vec a + 3 vec b . If its areas is alpha times the area of the parallelogram with AB, AD as adjacent sides than alpha =

If vec u, vec nu, vec w be such that |vec u| =1, |vec nu| = 2, |vec w| = 3 . If the projection vec nu along vec u is equal to that of vec w along vec u , vec nu and vec w are perpendicular to each other, then |vec u - vec nu + vec w| =

If vec a, vec b, vec c are mutually perpendicular unit vectors then |vec a + vec b + vec c| =

If vec a and vec b are not perpendicular to each other and vec r xx vec a = vec b xx vec a, vec r. vec c = vec 0 then vec r =

[vec a + vec b vec b + vec c vec c + vec a] =

In a trapezium ABCD the vector B vec C = lambda vec(AD). If vec p = A vec C + vec(BD) is coillinear with vec(AD) such that vec p = mu vec (AD), then

The contrapositive of the statement " If vec a = vec 0 or vec b = vec 0 then vec a xx vec b = vec 0 " is