Home
Class 12
MATHS
If veca, vecb, vecc are non-coplanar vec...

If `veca, vecb, vecc` are non-coplanar vectors and `lamda` is a real number, then the vectors `veca + 2 vecb + 3 vec c , lamda vecb + mu vec c and (2 lamda -1) vecc` ar non-coplanar for:

A

all value of `lamda`

B

all except one value of `lamda`

C

all except two value of `lamda`

D

no value of `lamda`

Text Solution

Verified by Experts

The correct Answer is:
C

The three vectors (a+2b+3c),`(lamdab+4c) annd (2lamda-1)`c are non-coplanar, if
`|(1,2,3),(0,lamda,4),(0,0,2lamda-1)|ne0`
`implies (2lamda-1)(lamda) ne0`
`implies lamda ne0,(1)/(2)`
So, these three vectors are non-coplanar for all except two values of `lamda`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=

Let veca, vecb and vecc be three non-zero vectors such that no two of these are collinear.If the vector veca + 2 vecb is collinear with vecc and vecb +3 vecc is collinear with veca (lamda being some non-zero scalar), then veca + 2 vecb + 6 vecc equals:

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then angle between veca and vecb is

For any three vectors veca,vecbandvecc , prove that vectors veca-vecb,vecb-veccandvecc-veca are coplanar.

If veca and vec b are unit vectors, then what is the angle between veca and vecb for sqrt3 veva - vecb to be a unit vectors ?