Home
Class 12
MATHS
If the vector veca = hati + ahatj + a^(2...

If the vector `veca = hati + ahatj + a^(2) hatk , vecb = hati + b hatj + b^(2) hatk , vecc = hati + chatj + c^(2) hatk` are three non-coplanar vectors and `|{:(a , a^(2) , 1 + a^(3)) , (b , b^(2) , 1 + b^(3)) , (c , c ^(2) , 1 + c^(3)):}|` = 0 , then the value of abc is equal to

A

2

B

`-1`

C

`1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B

Since, `|(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),a+c^(3))|=|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|+|(a,a^(2),a^(3)),(b,b^(2),b^(3)),(c,c^(2),c^(3))|=0`
`implies |(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=abc|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=0`
`implies (1+abc)|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)|=0" "[because|(a,a^(2),1),(b,b^(2),1),(c,c^(2),1)| ne 0]`
`implies 1+abc=0`
`implies abc=-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

The vector veca = hati + hatj + (m + 1) hatk , vecb = hati + hatj + m hatk.vecc = hati - hatj + m hatk are coplanar for :

If the vectors veca = hati - hatj + 2 hatk, vecb = 2 hati + 4 hatj + hatk and vecc = lamda hati + hatj + mu hatk aer mutually orthogonal, then (lamda, mu)=

The projection of vector veca = 2 hati - hatj + hatk along vecb = hati + 2 hatj + 2 hatk is

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

The three vectors 7 hati - 11 hatj + hatk, 5 hati + 3 hatj - 2 hatk, 12 hati - 8 hatj- hatk from :

Let veca = hati- hatk, vecb = x hati + hatj + (1-x) hatk and vec c = y hati + x hatj + (1+ x -y) hatk. Then [veca vecb vec c] depends on:

The projection of the vector veca = 3 hati - hatj - 2 hatk on the vector vecb = hati + 2 hatj - 3 hatk is :

Let veca = hat i + hatj + hatk, vecb = hati + 2 hatk and vecc = x hati + (x -2) hatj + hatk. If the vector vecc lies in the plane of veca and vecb, then x equals :