Home
Class 12
MATHS
If X=1+a+a^(2)+a^(3)+"..."+infty " and "...

If `X=1+a+a^(2)+a^(3)+"..."+infty " and " y=1+b+b^(2)+b^(3)+"..."+infty "` show that `1+ab+a^(2)b^(2)+a^(3)b^(3)+"..."+infty=(xy)/(x+y-1), "where " 0ltalt1" and 0ltblt1`.

Text Solution

Verified by Experts

Given, `x=1+a+a^(2)+a^(3)+"..."+infty=(1)/(1-ab)`
` implies x-ax=1`
` therefore a=((x-1))/(x)" " "......(i)"`
and `y=1+b+b^(2)+b^(3)+"..."+infty`
Similarly, ` b=((y-1))/(y)" " "......(ii)"`
Since, `0ltalt1,0ltblt1`
`therefore 0ltablt1`
Now, `1+ab+a^(2)b^(2)+a^(3)b^(3)+"..."+infty=(1)/(1-ab)`
`=(1)/(1-((x-1)/(x))((y-1)/(y)))" " ["from Eqs. (i) and (ii)"]`
`=(xy)/(xy-xy+x+y-1)`
Hence, `1+ab+a^(2)b^(2)+a^(3)b^(3)+"..."+infty =(xy)/(x+y-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=1+r^(a)+r^(2 a)+r^(3 a)+.. . to oo and lebrge B=1+r^(b)+r^(2 b)+......infty then (a)/(b) is equal to

If (x+iy)^(1//3) = a+ib , where a, b, x, y in R show that x/a - y/b = -2(a^(2) + b^(2)) .

1+(3)/(2)+(5)/(2^(2))+(7)/(2^(3))+.. .. to infty=

If x =1 + a + a^(2)+"………" to oo and y = 1+ b + b^(2) +"………" to oo where a and b are proper fraction, then 1 + ab + a^(2) b^(2) + "……." to oo equals :

Find the sum of the series 1+2^(2)x+3^(2)x^(2)+4^(2)x^(3)+"...."" upto "infty|x|lt1 .

If y = a cos (log x) + b sin (log x) , show that x^(2) y_(2) + xy_(1) + y = 0 .

Find the sum of n terms of the series (a+b)+(a^(2)+ab+b^(2))+(a^(3)+a^(2)b+ab^(2)+b^(3))+"......." where a ne 1,bne 1 and a ne b .

If U= {0, 1, 2, 3, 4}and A={1, 4}, B={1, 3} show that (A cup B)^(l) = A^(l) cap B^(l) .

lim _ ( xto 3) [( 1)/( x- 3) -( 3) /( x^(2) -3x) ] ( infty -infty "form " )

If 1+sin x+sin ^(2) x+….. to infty=4+2 root 3 , 0 lt x lt pi then x=