Home
Class 12
MATHS
If a(1),a(2),a(3),".....",a(n) are in HP...

If `a_(1),a_(2),a_(3),".....",a_(n)` are in HP, than prove that `a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)`

Text Solution

Verified by Experts

Given, `a_(1),a_(2),a_(3),"…",a_(n)` are in HP.
` therefore (1)/a_(1),(1)/a_(2),(1)/a_(3),"....."(1)/a_(n)` are in AP.
Let D be the common difference of the AP, than
`(1)/a_(2)-(1)/a_(1)=(1)/a_(3)-(1)/a_(2)=(1)/a_(4)-(1)/a_(3)="....."=(1)/a_(n)-(1)/a_(n-1)=D`
` implies (a_(1)-a_(2))/(a_(1)a_(2))=(a_(2)-a_(3))/(a_(2)a_(3))=(a_(3)-a_(4))/(a_(3)a_(4))="....."=(a_(n-1)-a_(n))/(a_(n-1)a_(n))=D`
` implies a_(1)a_(2)=(a_(1)-a_(2))/(D),a_(2)a_(3)=(a_(2)-a_(3))/(D),a_(3)a_(4)=(a_(3)-a_(4))/(D),".....",a_(n-1)-a_(n)=(a_(n-1)a_(n))/(D)`
On adding all such expressions, we get
` a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)-a_(n)=(a_(1)-a_(n))/(D)=(a_(1)a_(n))/(D)((1)/a_(n)-(1)/a_(1))`
` (a_(1)a_(n))/(D)[(1)/a_(1)+(n-1)D-(1)/(a_(1))]=(n-1)a_(1)a_(n)`
Hence, ` a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+ a_(n-1)a_(n)=(n-1)a_(1)a_(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),"........",a_(n) are in AP with a_(1)=0 , prove that (a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2)))=(a_(n-1))/(a_(2))+(a_(2))/(a_(n-1)) .

8,A_(1),A_(2),A_(3),24.

If a_(1),a_(2) , a_(3),"……..",a_(n) are in H.P. , then : (a_(1))/( a_(2) + a_(3) +"........."+a_(n)),(a_(2))/(a_(1) + a_(3)+"..........."+a_(n)),"......",(a_(n))/(a_(1)+a_(2)+"........"a_(n-1)) are in :

If a_(1) , a_(2) , a_(3),"………."a_(n) are in H.P. , then a_(1), a_(2) + a_(2) a_(3) + "………" + a_(n-1)a_(n) will be equal to :

If a_(1) , a_(2), "……………" a_(n) are in H.P., then the expression a_(1) a_(2) + a_(2) a_(3)+"…….."+ a_(n-1) a_(n) is equal to :

If a_(r ) gt 0, r in N and a_(1), a_(2) , a_(3) ,"……..",a_(2n) are in A.P. then : (a_(1) + a_(2n))/( sqrt( a_(1))+ sqrt(a_(2))) + ( a_(2) + a_(2n-1))/(sqrt(a_(2)) + sqrt(a_(3)))+"......"(a_(n)+a_(n+1))/(sqrt(a_(n))+sqrt(a_(n+1))) is equal to :

If a_(1)a_(2)a_(3)…….a_(9) are in A.P. then the value of |(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)),(a_(7),a_(8),a_(9))| is

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common ratio r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

If a_(1) , a_(2),"………",a_(n) are n non-zero real numbers such that ( a_(1)^(2) +a_(2)^(2) + "........."+a_(n-1)^(2) ) ( a_(2)^(2) + a_(3)^(2) + "........"+a_(n)^(2))le(a_(1) a_(2) + a_(2) a_(3) +".........." +a_(n-1) a_(n))^(2), a_(1), a_(2),".........",a_(n) are in :

If a_(1), a_(2) ,a_(3)"….." is an A.P. such that : a_(1) + a_(5) + a_(10)+a_(15)+a_(20)+a_(24)=225 , then a_(1) + a_(2)+a_(3) +"….." a_(23) + a_(24) is :