Home
Class 12
MATHS
If a,b,c are in AP, than show that a^(2)...

If `a,b,c` are in AP, than show that `a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)=(2)/(9)(a+b+c)^(3)`.

Text Solution

Verified by Experts

`therefore a,b,c` are in AP.
`therefore b=(a+c)/(2)i.e., 2b=a+c " " "…….(i)"`
LHS`=a^(2)(b+c)+b^(2)(c+a)+c^(2)(a+b)`
`=(a^(2)b+a^(2)c)+b^(2)(2b)+(c^(2)a+c^(2)b)`
`=b(a^(2)+c^(2))+ac(a+c)+2b^(3)`
`=b[(a+c)^(2)-2ac]+ac(2b)+2b^(3)`
`=b(a+c)^(2)+2b^(3)=b(2b)^(2)+2b^(3)=6b^(3)`
RHS `=(2)/(9)(a+b+c)^(3)=(2)/(9)(2b+b)^(3)`
`=(2)/(9)xx27b^(3)=6b^(3)`
Hence, LHS=RHS.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If a,b,c are in A.P. and a^(2) , b^(2) , c^(2) are in H.P. , then :

If a,b,c are in A.P., the 3^(a), 3^(b) , 3^(c ) are in :

Show that (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a) =0

If a,b,c are in AP and b,c,d be in HP, then

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2

If a,b,c are in HP,b,c,d are in GP and c,d,e are in AP, than show that e=(ab^(2))/(2a-b)^(2) .

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

Suppose a,b,c are in A.P. and a^(2) , b^(2) , c^(2) are in G.P. If a lt b lt c and a+ b + c = ( 3)/( 2) , then the value of a is :