Home
Class 12
MATHS
If a,b,c,d be four distinct positive qua...

If `a,b,c,d` be four distinct positive quantities in GP,then
(a) `a+dgtb+c`
(b) ` c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))`

Text Solution

Verified by Experts

`therefore a,b,c,d` are in GP.
(a) Applying AMgtGM
For first three members,
`(a+c)/(2)gtb`
`implies a+cgt2b " " "….(v)"`
For last three members, `(b+d)/(2)gtc`
`implies b+dgt2c " " "…..(vi)"`
From Eqs. (v) and (vi), we get
`a+c+b+dgt2b+2c " or " a+dgtb+c`
(b) Applying GMgt HM
For first three members, `bgt(2ac)/(a+c)`
`implies ab+bcgt 2ac " " "....(vii)"`
For last three members, `cgt(2bd)/(b+d)`
`implies bc+cdgt2bd " " "....(viii)"`
From Eqs. (vii) and (viii), we get
`ab+bc+bc+cdgt2ac+2bd`
or `ab+cdgt 2(ac+bd-bc)`
Dividing in each term by `abcd`, we get
` c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d be four distinct positive quantities in AP, then (a) bcgtad (b) c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))

If a,b,c,d be four disinct positive quantities in HP, then (a) a+dgtb+c (b) adgt bc

If a, b, c are distinct positive real numbers and a^(2)+b^(2)+c^(2)=1 , then ab+bc+ca is :

If a,b,c and d are four positive real numbers such that abcd=1 , what is the minimum value of (1+a)(1+b)(1+c)(1+d) .

If a,b, c, d are positive, then lim_(x rarr oo) (1 + 1/(a+bx))^(c+dx)=

If B and C are non-singular matrices and O is null matrix, then show that [[A, B],[ C ,O]]^(-1)=[[O, C^(-1)],[B^(-1),-B^-1A C^(-1)]]dot

If a,b,c are in AP, then (a)/(bc),(1)/(c ), (1)/(b) are in

If a,b,c,d are distinct integers in an A.P. such that d=a^(2)+b^(2)+c^(2) , then find the value of a+b+c+d.

If a,b,c gt 0 and x,y,z , in R then the determinant : |((a^x+a^(-x))^2,(a^(x)-a^(-x))^2,1),((b^y+a^(-y))^2,(b^(y)-b^(-y))^2,1),((c^z+c^(-z))^2,(c^(z)-c^(-z))^2,1)| is equal to :

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2