Home
Class 12
MATHS
If a,b,c,d be four disinct positive quan...

If `a,b,c,d` be four disinct positive quantities in HP, then
(a) `a+dgtb+c`
(b)`adgt bc`

Text Solution

Verified by Experts

`therefore a,b,c,d` are in HP.
(a) Applying AMgtHM
For first three members,
`(a+c)/(2)gtb`
`implies a+cgt2b" " "….(ix)"`
For last three members, `(b+d)/(2)gtc`
`implies b+dgt2c " " "….(x)"`
From Eqs. (ix) and (x), we get
`a+c+b+dgt2b+2c`
or `a+dgtb+c`
(b) Applying GMgt HM
For first three members, `sqrt(ac)gtb`
`implies acgtb^(2) " " "....(xi)"`
For last three members, `sqrt(bd)gtc`
`implies bdgtc^(2) " " "....(xii)"`
From Eqs. (xi) and (xii), we get
`(ac)(bd)gtb^(2)c^(2)`
or `adgtbc`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d be four distinct positive quantities in GP,then (a) a+dgtb+c (b) c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))

If a,b,c,d be four distinct positive quantities in AP, then (a) bcgtad (b) c^(-1)d^(-1)+a^(-1)b^(-1)gt2(b^(-1)d^(-1)+a^(-1)c^(-1)-a^(-1)d^(-1))

If a,b,c,d are in H.P., then :

Statement 1 If a,b,c are three positive numbers in GP, then ((a+b+c)/(3))((3abc)/(ab+bc+ca))=(abc)^((2)/(3)) . Statement 2 (AM)(HM)=(GM)^(2) is true for positive numbers.

If a ,b ,c ,d are four consecutive terms of an increasing A.P., then the roots of the equation (x-a)(x-c)+2(x-b)(x-d)=0 are a. non-real complex b. real and equal c. integers d. real and distinct

If a,b,c,d are positive real numbers such that a+b+c +d = 12 , then M = ( a+ b ) ( c + d ) satisfies the relation :

If a, b, c are distinct positive real numbers and a^(2)+b^(2)+c^(2)=1 , then ab+bc+ca is :

If a,b,c are in H.P., then correct statement is :

If a ,b,c are in H.P., then correct statement is :

If a,b,c,d and p are distinct non -zero real numbers such that : ( a^(2) + b^(2) +c^(2))p^(2) - 2 ( ab + bc + cd) p + ( b^(2) + c^(2) + d^(2)) le 0 , then a,b,c,d :