Home
Class 12
MATHS
Find the sum to 'n' terms of the series ...

Find the sum to 'n' terms of the series `1^(2)+3^(2)+5^(2)+.....+`

Text Solution

Verified by Experts

Let `T_(n)` be the nth term of this series, then
`T_(n)=[1+(n-1)2]^(2)=(2n-1)^(2)=4n^(2)-4n+1`
`therefore` Sum of n terms `S_(n)=sumT_(n)=4sumn^(2)-4sumn+sum1`
`=(4n(n+1)(2n+1))/(6)-(4n(n+1))/(2)+n`
`=(4n(n+1)(2n+1))/(6)-(4n(n+1))/(2)+n`
`=(n(4n^(2)-1))/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the n terms to the series 5^(2)+6^(2)+7^(2)+......+20^(2) ?

Find the sum to n terms of the series . 3 xx 1^(2) + 5 xx 2^(2) + 7 xx 3^(2) + . . . . . .

Find the sum to n terms of the series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+.....

Find the sum to n terms of the series 1/(1+1^(2)+1^(4))+2/(1+2^(2)+2^(4))+3/(1+3^(2)+3^(4))+… .

Find the sum of n terms of the series 1. 2. 3+2. 3. 4+3. 4. 5+

Sum to n terms of the series 1+(1+2)+(1+2+3)+.. ..

If n is odd then the sum of n terms of the series 1^(2)-2^(2)+3^(2)-4^(2)+5^(2)-6^(2)-.. .. .. .. is

Find the sum to 'n' terms of 3.1^(2)+5.2^(2)+7.3^(2)+ ........

Find the sum to n terms of the series , 5+11+19+29+41…

Find the sum to n terms series 1^(2) + (1^(2) + 2^(2)) (1^(2) + 2^(2) + 3^(2)) + . . . . .