Home
Class 12
MATHS
If sum(r=1)^(n)T(r)=(n(n+1)(n+2)(n+3))/...

If ` sum_(r=1)^(n)T_(r)=(n(n+1)(n+2)(n+3))/(12)` where `T_(r)` denotes the rth term of the series. Find ` lim_(nto oo) sum_(r=1)^(n)(1)/(T_(r))`.

Text Solution

Verified by Experts

We, have, `T_(n)=sum_(r=1)^(n)T_(r)-sum_(r=1)^(n-1)T_(r)`
`=(n(n+1)(n+2)(n+3))/(12)-((n-1)n(n+1)(n+2))/(12)`
`=(n(n+1)(n+2))/(12)[(n+3)-(n-1)]`
`=(n(n+1)(n+2))/(3)(1)/(T_(n))=(3)/(n(n+1)(n-2))`
`:.underset(nto oo)(lim)sum_(r=1)^(n)(1)/(T_(r))=underset(nto oo)(lim)sum_(r=1)^(n)(3)/(r(r+1)(r+2))`
`=3underset(nto oo)(lim)sum_(r=1)^(n)(1)/(r(r+1)(r+2))`
`=3underset(nto oo)(lim)((1)/(1*2*3)+(1)/(2*3*4)+(1)/(3*4*5)+"...."+(1)/(n(+1)(n+2)))`
Maha Shortcut Method
`=3underset(nto oo2)(lim)(1)/(2)((1)/(1*2)-(1)/(n(n+1)(n+2)))`
`(3)/(2)((1)/(2)-0)=(3)/(4)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r = 1)^(n) 1/n e^(r/n) is :

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

sum_(r=0)^(m)( n+r )C_(n)=

If sum_(r=1)^(prop) t_(r ) = ( n (n +1) ( n + 2) ( n + 3))/( 8 ) , where t_(r ) denotes the rth term of a seires, then underset( n rarr prop ) ( "lim") sum_(r = 1) ^(prop ) (1)/( t_(r )) is :

Lim_(nto oo)(3^(n)+4^(n))^((1)/(n))=

The value of sum_(r=1)^(n)(nP_(r))/(r!)=

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot