Home
Class 12
MATHS
If a + b - 1, a gt 0,b gt 0, prove that ...

If a + b - 1, a `gt` 0,b `gt` 0, prove that `(a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)`

Text Solution

Verified by Experts

Since, AM of 2nd powers gt 2nd power of AM
`:. ((a+(1)/(a))^(2)+(b+(1)/(b))^(2))/(2)gt((a+(1)/(a)+b+(1)/(b))/(2))^(2)`
`= (1)/(4)(a+b+a^(-1)+b^(-1))^(2)=(1)/(4)(1+a^(-1)+b^(-1))^(2) " "[:. a+b=1]`
`:.(a+(1)/(a))^(2)+(b+(1)/(b))^(2)gt(1)/(2)(1+a^(-1)+b^(-1))^(2)" " "......(i)"`
Again, `(a^(-1)+b^(-1))/(2)gt((a+b)/(2))^(-1)=((1)/(2))^(-1)=2`
or `(a^(-1)+b^(-1))/(2)gt2`
`implies a^(-1)+b^(-1)gt4`
`:. (1+ a^(-1)+b^(-1))gt5 " or " (1+ a^(-1)+b^(-1))^(2)gt25`
` implies (1)/(2) (1+ a^(-1)+b^(-1))^(2)gt(25)/(2) " " ".....(ii)"`
From Eqs. (i) and (ii), we get
` (a+(1)/(a))^(2)+(b+(1)/(b))^(2)gt(25)/(2)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If ab = 2a + 3b, a gt 0, b gt 0 , then the minimum value of ab is

If the ratio of the roots of a_(1)x^(2) + b_(1) x + c_(1) = 0 be equal to the ratio of the roots of a_(2) x^(2) + b_(2)x + c_(2) = 0 , then (a_(1))/(a_(2)) , (b_(1))/(b_(2)) , (c_(1))/(c_(2)) are in :

If a gt b gt 0 , then the value of tan^(-1)((a)/(b))+tan^(-1)((a+b)/(a-b)) depends on

If (x-a)^(2)+(y-b)^(2)=c^(2) , for some c gt 0 , prove that ([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2))) is a constant independent of a and b.

If a ne b ne 0, prove that points (a, a^(2)), (b, b^(2)), and (0, 0) can never be collinear.

If a gt 0, b gt 0 , c gt 0 are in G.P. , then : log_(a) x , log_(b) x, log_(c ) x are in :

Prove that (a, 0), (0, b), and (1, 1) are collinear if (1)/(a) + (1)/(b) = 1.