Home
Class 12
MATHS
If b-c,2b-lambda,b-a " are in HP, then "...

If `b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2)` are is

A

AP

B

GP

C

HP

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`(2b-lambda)=(2(b-c)(b-a))/((b-c)+(b-a))`
`implies (2b-lambda)=(2b-(a+c))=2[b^(2)-(a+c)b+ac]`
`implies 2b^(2)-2blambda+lambda (a+c)-2ac=0`
`implies b^(2)-blambda+(lambda)/(2)(a+c)-ac=0`
`implies (b-(lambda)/(2))^(2)-lambda^(2)/(4)+lambda/(2)(a+c)-ac=0`
`implies (b-(lambda)/(2))^(2)=lambda^(2)/(4)-(lambda)/(2)(a+c)+ac`
`implies (b-(lambda)/(2))^(2)=(a-lambda/(2))(c-(lambda)/(2))`
Hence, `a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2)` are in GP.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c are in HP, then (a-b)/(b-c) is equal to

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If a, b, c are in HP., then a/(b+c),b/(c+a),c/(a+b) are in

If alpha , beta are the roots of lambda(x^(2)+x)+x+5 =0 and lambda_(1) , lambda_(2) are the two values of lambda for which alpha , beta are connected by the relation (alpha)/(beta)+(beta)/(alpha) =4, then the value of (lambda_(1))/(lambda_(2))+(lambda_(2))/(lambda_(1)) =

If a,b,c are in AP and (a+2b-c)(2b+c-a)(c+a-b)=lambdaabc , then lambda is

If vec a, vec b, vec c are non-coplanar vectors and lambda is a real number, then [lambda ( vec a + vec b) lambda^(2) vec b lambda vec c] = [ vec a vec b + vec c vec b] for

The number of distinct real values of lambda for which the vectors -lambda^(2)i + j+ k , i- lambda^(2)j + k and i+j- lambda^(2)k are coplanar is

If i-2j, 3j+k and lambda i + 3j are coplanar then lambda =

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is