Home
Class 12
MATHS
If a,b,c are non-zero real numbers, then...

If a,b,c are non-zero real numbers, then the minimum value of the expression `((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2))` equals

A

12

B

24

C

30

D

60

Text Solution

Verified by Experts

The correct Answer is:
C

Let `P=((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2))`
`(a^(4)+4+(1)/(a^(4)))(b^(2)+3+(1)/(b^(2))){(c+1)^(2)+1}`
`:.a^(4)+4+(1)/(a^(4))ge6,b^(2)+3+(1)/(b^(2))ge5 " and "(c+1)^(2)+1ge 1`
`[:. x+(1)/(x)ge2 " for "xgt0]`
`:.P ge 6*5*1=30 implies Pge30`
Hence, the required minimum value is 30.
Promotional Banner

Similar Questions

Explore conceptually related problems

The expression : ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^(2)c^(2)) is :

If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca) , where a,b,c are non-zero real numbers, then a,b,c are in GP. Statement 2 If (a_(1)-a_(2))^(2)+(a_(2)-a_(3))^(2)+(a_(3)-a_(1))^(2)=0 , then a_(1)=a_(2)=a_(3),AA a_(1),a_(2),a_(3) in R .

If a,b,c,d and p are distinct non -zero real numbers such that : ( a^(2) + b^(2) +c^(2))p^(2) - 2 ( ab + bc + cd) p + ( b^(2) + c^(2) + d^(2)) le 0 , then a,b,c,d :

Find the product (2a + b+c) (4a ^(2) + b ^(2) + c ^(2) - 2ab -bc -2ca)

Let a ,b and c be real numbers such that a+2b+c=4 . Find the maximum value of (a b+b c+c a)dot

If three positive real numbers a,b,c are in A.P. such that abc=4, then the minimum value of b is

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc) The minimum value of , where a, b, c in R^+ is

The expression ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2 c^2) for a triangle ABC is equal to

If 2x^(3)+ax^(2)+bx+4=0 (a and b are positive real numbers) has three real roots. The minimum value of (a+b)^(3) is

If 2x^(3)+ax^(2)+bx+4=0 (a and b are positive real numbers) has three real roots. The minimum value of b^(3) is